
Db2 Web Query Functions
Release 2.2.1

Active Technologies, EDA, EDA/SQL, FIDEL, FOCUS, Information Builders, the Information Builders logo, iWay, iWay
Software, Parlay, PC/FOCUS, RStat, Table Talk, Web390, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS
Magnify are registered trademarks, and DataMigrator and Hyperstage are trademarks of Information Builders, Inc.

Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Due to the nature of this material, this document refers to numerous hardware and software products by their
trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their
respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore
cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product
described.

Copyright © 2018, by Information Builders, Inc. and iWay Software. All rights reserved. Patent Pending. This manual, or
parts thereof, may not be reproduced in any form without the written permission of Information Builders, Inc.

Contents

1. Using Functions . 7

Types of Functions . 7

Character Functions .8

Simplified Character Functions . 10

Data Source and Decoding Functions .11

Date and Time Functions . 11

Standard Date and Time Functions. 11

Simplified Date and Date-Time Functions. .14

Format Conversion Functions .14

Numeric Functions .15

System Functions . 16

Supplying an Argument in a Function . 16

Argument Types. 16

Increased Number of Function Arguments. 17

Argument Formats. 17

2. Character Functions . 19

ARGLEN: Measuring the Length of a String . 19

BITSON: Determining If a Bit Is On or Off .20

BYTVAL: Translating a Character to a Decimal Value .21

CHKFMT: Checking the Format of a String .22

CTRAN: Translating One Character to Another . 23

CTRFLD: Centering a Character String . 24

EDIT: Extracting or Adding Characters . 25

GETTOK: Extracting a Substring (Token) .26

LCWORD: Converting a Character String to Mixed Case . 27

LCWORD2: Converting a Character String to Mixed-Case . 28

LCWORD3: Converting a Character String to Mixed-Case . 29

LJUST: Left-Justifying a Character String . 30

LOCASE: Converting Text to Lowercase . 31

OVRLAY: Overlaying a Character String .32

PARAG: Dividing Text Into Smaller Lines . 33

POSIT: Finding the Beginning of a Substring . 34

Db2 Web Query Functions 3

PTOA: Packed Decimal to Alphanumeric Conversion . 35

REVERSE: Reversing Characters in a Character String . 36

RJUST: Right-Justifying a Character String . 37

SOUNDEX: Comparing Character Strings Phonetically . 38

SPELLNM: Spelling Out a Dollar Amount . 39

SUBSTR: Extracting a Substring . 40

UPCASE: Converting Text to Uppercase . 41

3. Simplified Character Functions .43

CHAR_LENGTH: Returning the Length in Characters of a String .44

DIGITS: Converting a Number to a Character String .45

LOWER: Returning a String With All Letters Lowercase . 48

LPAD: Left-Padding a Character String . 49

LTRIM: Removing Blanks From the Left End of a String .51

POSITION: Returning the First Position of a Substring in a Source String .52

RPAD: Right-Padding a Character String .53

RTRIM: Removing Blanks From the Right End of a String . 55

SUBSTRING: Extracting a Substring From a Source String . 56

TOKEN: Extracting a Token From a String . 57

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String 59

UPPER: Returning a String With All Letters Uppercase . 61

4. Data Source and Decoding Functions . 63

DB_EXPR: Inserting an SQL Expression into a Request .63

DECODE: Decoding Values .65

LAST: Retrieving the Preceding Value . 67

5. Date and Time Functions .69

AYM: Adding or Subtracting Months to or From Dates .69

AYMD: Adding or Subtracting Days to or From a Date . 70

CHGDAT: Changing How a Date String Displays . 71

DA Functions: Converting a Date to an Integer . 74

DATEADD: Adding or Subtracting a Date Unit to or From a Date . 75

DATECVT: Converting the Format of a Date . 76

DATEDIF: Finding the Difference Between Two Dates . 77

Contents

4 IBM

DATEMOV: Moving a Date to a Significant Point . 79

Returning a Date Component as an Integer . 80

DATETRAN: Formatting Dates in International Formats . 82

Precision for Date-Time Values . 89

DATEPATTERN in the Master File .93

Specifying Variables in a Date Pattern. 93

Specifying Constants in a Date Pattern. .95

DMY, MDY, YMD: Calculating the Difference Between Two Dates .98

DOWK and DOWKL: Finding the Day of the Week .99

DT Functions: Converting an Integer to a Date . 100

FIYR: Obtaining the Financial Year . 101

FIQTR: Obtaining the Financial Quarter . 103

FIYYQ: Converting a Calendar Date to a Financial Date .105

GREGDT: Converting From Julian to Gregorian Format .107

HADD: Incrementing a Date-Time Value .108

HCNVRT: Converting a Date-Time Value to Alphanumeric Format . 109

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format 110

HDIFF: Finding the Number of Units Between Two Date-Time Values . 111

HDTTM: Converting a Date Value to a Date-Time Value . 112

HGETC: Storing the Current Date and Time in a Date-Time Field .113

HHMMSS: Retrieving the Current Time . 113

HINPUT: Converting an Alphanumeric String to a Date-Time Value . 114

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight . 115

HNAME: Retrieving a Date-Time Component in Alphanumeric Format .116

HPART: Retrieving a Date-Time Component in Numeric Format . 117

HSETPT: Inserting a Component Into a Date-Time Value . 117

HTIME: Converting the Time Portion of a Date-Time Value to a Number .118

JULDAT: Converting From Gregorian to Julian Format . 119

TIMETOTS: Converting a Time to a Timestamp .120

TODAY: Returning the Current Date . 121

YM: Calculating Elapsed Months . 122

6. Simplified Date and Date-Time Functions . 123

Contents

Db2 Web Query Functions 5

DTADD: Incrementing a Date or Date-Time Component . 123

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values . 126

DTPART: Returning a Date or Date-Time Component in Integer Format . 127

DTRUNC: Returning the Start of a Date Period for a Given Date . 129

7. Format Conversion Functions . 131

ATODBL: Converting an Alphanumeric String to Double-Precision Format 131

EDIT: Converting the Format of a Field .132

FTOA: Converting a Number to Alphanumeric Format . 133

HEXBYT: Converting a Decimal Integer to a Character . 134

ITONUM: Converting a Large Binary Integer to Double-Precision Format . 135

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format .136

ITOZ: Converting a Number to Zoned Format . 137

PCKOUT: Writing a Packed Number of Variable Length . 138

8. Numeric Functions . 139

ABS: Calculating Absolute Value .139

BAR: Producing a Bar Chart . 140

CHKPCK: Validating a Packed Field . 141

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division .142

EXP: Raising e to the Nth Power . 143

INT: Finding the Greatest Integer . 144

LOG: Calculating the Natural Logarithm .144

MAX and MIN: Finding the Maximum or Minimum Value .145

SQRT: Calculating the Square Root . 145

9. System Functions . 147

FGETENV: Retrieving the Value of an Environment Variable . 147

GETUSER: Retrieving a User ID . 148

Contents

6 IBM

Chapter1
Using Functions

The following topics offer an introduction to functions and explain how to use them.
Functions provide a convenient way to perform certain calculations and manipulations.

In order to use any of the specified functions described in this reference manual, you
need to create a temporary field which is discussed later.

In this chapter:

Types of Functions

Character Functions

Simplified Character Functions

Data Source and Decoding Functions

Date and Time Functions

Format Conversion Functions

Numeric Functions

System Functions

Supplying an Argument in a Function

Types of Functions

You can access any of the following types of functions:

Character functions. Manipulate alphanumeric fields or character strings.

Simplifed character functions. Provide streamlined parameter lists, similar to those used
by SQL functions.

Data source and decoding functions. Retrieve data source values and assign values based
on the value of an input field.

Date and time functions. Manipulate dates and times.

Simplified date and time functions. Have streamlined parameter lists, similar to those
used by SQL functions.

Db2 Web Query Functions 7

Format conversion functions. Convert fields from one format to another.

Numeric functions. Perform calculations on numeric constants and fields.

System functions. Call the operating system to obtain information about the operating
environment.

Character Functions

The following functions manipulate alphanumeric fields or character strings.

ARGLEN

Measures the length of a character string within a field, excluding trailing blanks.

BITSON

Evaluates an individual bit within a character string to determine whether it is on or off.

BYTVAL

Translates a character to its corresponding ASCII or EBCDIC decimal value.

CHKFMT

Checks a character string for incorrect characters or character types.

CTRAN

Translates a character within a character string to another character based on its decimal
value.

CTRFLD

Centers a character string within a field.

EDIT

Extracts characters from or adds characters to a character string.

GETTOK

Divides a character string into substrings, called tokens, where a specific character, called
a delimiter, occurs in the string.

LCWORD

Converts the letters in a character string to mixed case.

LCWORD2

Converts the letters in a character string to mixed-case by converting every alphanumeric
character to lowercase except the first letter of each new word.

Character Functions

8 IBM

LCWORD3

Converts the letters in a character string to mixed-case by converting the first letter of each
word to uppercase and converting every other letter to lowercase.

LJUST

Left-justifies a character string within a field.

LOCASE

Converts alphanumeric text to lowercase.

OVRLAY

Overlays a base character string with a substring.

PARAG

Divides a line of text into smaller lines by marking them with a delimiter.

POSIT

Finds the starting position of a substring within a larger string.

PTOA

Converts a number from numeric format to alphanumeric format. It retains the decimal
positions of the number and right-justifies it with leading spaces. You can also add edit
options to a number converted by PTOA.

REVERSE

Reverses the characters in a character string.

RJUST

Right-justifies a character string.

SOUNDEX

Searches for a character string phonetically without regard to spelling.

SPELLNUM

Takes an alphanumeric string or a numeric value with two decimal places and spells it out
with dollars and cents.

SUBSTR

Extracts a substring based on where it begins and its length in the parent string.

UPCASE

Converts a character string to uppercase.

1. Using Functions

Db2 Web Query Functions 9

Simplified Character Functions

The following character functions have streamlined parameter lists, similar to those used by
SQL functions.

CHAR_LENGTH

Returns the length in characters of a string.

DIGITS

Converts a number to a character string.

LOWER

Returns a sring with all letters lowercase.

LPAD

Left-pads a character string.

LTRIM

Removes blanks from the left end of a string.

POSITION

Returns the first position of a substring in a source string.

RTRIM

Removes blanks from the right end of a string.

RPAD

Right-pads a character string.

SUBSTRING

Extracts a substring from a source string.

TOKEN

Extracts a token from a string.

TRIM_

Removes leading characters, trailing characters, or both from a string.

UPPER

Returns a string with all letters uppercase.

Simplified Character Functions

10 IBM

Data Source and Decoding Functions

The following functions retrieve data source values and assign values.

DB_EXPR

Inserts a native SQL expression exactly as entered into the native SQL generated for a
Web Query or SQL language request.

DECODE

Assigns values based on the coded value of an input field.

LAST

Retrieves the preceding value for a field.

Date and Time Functions

The following functions manipulate dates and times.

Standard Date and Time Functions

AYM

Adds or subtracts months from dates that are in year-month format.

AYMD

Adds or subtracts days from dates that are in year-month-day format.

CHGDAT

Rearranges the year, month, and day portions of alphanumeric dates, and converts dates
between long and short date formats.

DA

Converts dates to the corresponding number of days elapsed since December 31, 1899.

DADMY converts dates in day-month-year format.

DADYM converts dates in day-year-month format.

DAMDY converts dates in month-day-year format.

DAMYD converts dates in month-year-day format.

DAYDM converts dates in year-day-month format.

DAYMD converts dates in year-month-day format.

DATEADD

Adds a unit to or subtracts a unit from a date format.

1. Using Functions

Db2 Web Query Functions 11

DATECVT

Converts date formats.

DATEDIF

Returns the difference between two dates in units.

DATEMOV

Moves a date to a significant point on the calendar.

DATEPATTERN

Stores date values in alphanumeric format without any particular standard, with any
combination of components such as year, quarter, and month, and with any delimiter.

DATETRAN

Formats dates in international formats.

DMY, MDY, and YMD

Calculates the difference between two dates.

DOWK and DOWKL

Finds the day of the week that corresponds to a date.

DT

Converts the number of days elapsed since December 31, 1899 to the corresponding
date.

DTDMY converts numbers to day-month-year dates.

DTDYM converts numbers to day-year-month dates.

DTMDY converts numbers to month-day-year dates.

DTMYD converts numbers to month-year-day dates.

DTYDM converts numbers to year-day-month dates.

DTYMD converts numbers to year-month-day dates.

FIYR

Returns the financial year, also known as the fiscal year, corresponding to a given calendar
date based on the financial year starting date and the financial year numbering convention.

FIQTR

Returns the financial quarter corresponding to a given calendar date based on the financial
year starting date and the financial year numbering convention.

Date and Time Functions

12 IBM

FIYYQ

Returns a financial date containing both the financial year and quarter that corresponds to
a give calendar date.

GREGDT

Converts dates in Julian format to year-month-day format.

HADD

Increments a date-time field by a given number of units.

HCNVRT

Converts a date-time field to a character string.

HDATE

Extracts the date portion of a date-time field, converts it to a date format, and returns the
result in the format YYMD.

HDIFF

Calculates the number of units between two date-time values.

HDTTM

Converts a date field to a date-time field. The time portion is set to midnight.

HGETC

Stores the current date and time in a date-time field.

HHMMSS

Retrieves the current time from the system.

HINPUT

Converts an alphanumeric string to a date-time value.

HMIDNT

Changes the time portion of a date-time field to midnight (all zeros).

HNAME

Extracts a specified component from a date-time field and returns it in alphanumeric
format.

HPART

Extracts a specified component from a date-time field and returns it in numeric format.

1. Using Functions

Db2 Web Query Functions 13

HSETPT

Inserts the numeric value of a specified component into a date-time field.

HTIME

Converts the time portion of a date-time field to the number of milliseconds or
microseconds.

JULDAT

Converts dates from year-month-day format to Julian (year-day format).

TIMETOTS

Converts a time to a timestamp.

TODAY

Retrieves the current date from the system.

YM
Calculates the number of months that elapse between two dates. The dates must be in
year-month format.

Simplified Date and Date-Time Functions

The following functions have streamlined parameter lists, similar to those used by SQL
functions.

DTADD

Increments a date or date-time component.

DTDIFF

Returns a number of component boundaries between date or date-time values.

DTPART

Reurns a date or date-time component in integer format.

DTRUNC

Returns the start of a date period for a given date.

Format Conversion Functions

The following functions convert fields from one format to another.

ATODBL

Converts a number in alphanumeric format to double-precision format.

Format Conversion Functions

14 IBM

EDIT

Converts an alphanumeric field that contains numeric characters to numeric format or
converts a numeric field to alphanumeric format.

FTOA

Converts a number in a numeric format to alphanumeric format.

HEXBYT

Obtains the ASCII or EBCDIC character equivalent of a decimal integer value.

ITONUM

Converts a large binary integer in a data source to double-precision format.

ITOPACK

Converts a large binary integer in a data source to packed-decimal format.

ITOZ

Converts a number in numeric format to zoned format.

PCKOUT

Writes a packed number of variable length to an extract file.

Numeric Functions

The following functions perform calculations on numeric constants or fields.

ABS

Returns the absolute value of a number.

BAR

Produces a horizontal bar chart.

CHKPCK

Validates the data in a field described as packed format.

DMOD, FMOD, and IMOD

Calculates the remainder from a division.

EXP

Raises the number "e" to a specified power.

INT

Returns the integer component of a number.

1. Using Functions

Db2 Web Query Functions 15

LOG

Returns the natural logarithm of a number.

MAX and MIN

Returns the maximum or minimum value, respectively, from a list of values.

PRDNOR and PRDUNI

Generates reproducible random numbers.

RDNORM and RDUNIF

Generates random numbers.

SQRT

Calculates the square root of a number.

System Functions

The following functions call the operating system to obtain information about the operating
environment.

FGETENV

Retrieves the value of an environment variable and returns it as an alphanumeric string.

GETUSER

Retrieves the ID of the connected user.

HHMMSS

Retrieves the current time from the system.

TODAY

Retrieves the current date from the system.

Supplying an Argument in a Function

When supplying an argument in a function, you must understand which types of arguments are
acceptable, the formats and lengths for these arguments, and the number and order of these
arguments.

Argument Types

The following are acceptable arguments for a function:

Numeric constant, such as 6 or 15.

System Functions

16 IBM

Date constant, such as 022802.

Date in alphanumeric, numeric, or date format.

Alphanumeric literal, such as STEVENS or NEW YORK NY. A literal must be enclosed in
single quotation marks.

Number in alphanumeric format.

Field name, such as FIRST_NAME or HIRE_DATE. A field can be a data source field or
temporary field. The field name can be up to 66 characters long or a qualified field name,
unique truncation, or alias.

Expression, such as a numeric, date, or alphanumeric expression. An expression can use
arithmetic operators and the concatenation sign (|). For example, the following are valid
expressions:

CURR_SAL * 1.03

and

FN || LN

Format of the output value enclosed in single quotation marks.

Another function.

Increased Number of Function Arguments

The number of arguments supported for user-written subroutines has been increased from 28
to 200. All other rules regarding arguments for user-written subroutines remain the same.

Argument Formats

Depending on the function, an argument can be in alphanumeric, numeric, or date format. If
you supply an argument in the wrong format, you will cause an error or the function will not
return correct data. To obtain the valid formats, click the Format button on the tool for a list of
possible types and lengths. The following are the types of argument formats:

Alphanumeric argument. An alphanumeric argument is stored internally as one character
per byte. An alphanumeric argument can be a literal, an alphanumeric field, a number or
date stored in alphanumeric format, an alphanumeric expression, or the format of an
alphanumeric field.

1. Using Functions

Db2 Web Query Functions 17

Numeric argument. A numeric argument is stored internally as a binary or packed number.
A numeric argument includes integer (I), floating-point single-precision (F), floating-point
double-precision (D), and packed-decimal (P) formats. A numeric argument can be a
numeric constant, field, or expression, or the format of a numeric field. All numeric
arguments are converted to floating-point double-precision format when used with a
function, but results are returned in the format specified for the output field.

Date argument. A date argument can be in either alphanumeric, numeric, or date format.
The list of arguments for the individual function will specify what type of format the function
accepts. A date argument can be a date in alphanumeric, numeric, or date format; a date
field or expression; or the format of a date field. If you supply an argument with a two-digit
year, the function assigns a century based on the DATEFNS, YRTHRESH, and DEFCENT
parameter settings.

Supplying an Argument in a Function

18 IBM

Chapter2
Character Functions

Character functions manipulate alphanumeric fields and character strings.

In this chapter:

ARGLEN: Measuring the Length of a
String

BITSON: Determining If a Bit Is On or Off

BYTVAL: Translating a Character to a
Decimal Value

CHKFMT: Checking the Format of a
String

CTRAN: Translating One Character to
Another

CTRFLD: Centering a Character String

EDIT: Extracting or Adding Characters

GETTOK: Extracting a Substring (Token)

LCWORD: Converting a Character String
to Mixed Case

LCWORD2: Converting a Character String
to Mixed-Case

LCWORD3: Converting a Character String
to Mixed-Case

LJUST: Left-Justifying a Character String

LOCASE: Converting Text to Lowercase

OVRLAY: Overlaying a Character String

PARAG: Dividing Text Into Smaller Lines

POSIT: Finding the Beginning of a
Substring

PTOA: Packed Decimal to Alphanumeric
Conversion

REVERSE: Reversing Characters in a
Character String

RJUST: Right-Justifying a Character
String

SOUNDEX: Comparing Character Strings
Phonetically

SPELLNM: Spelling Out a Dollar Amount

SUBSTR: Extracting a Substring

UPCASE: Converting Text to Uppercase

ARGLEN: Measuring the Length of a String

The ARGLEN function measures the length of a character string within a field, excluding trailing
spaces. The field format in a Master File specifies the length of a field, including trailing
spaces.

Db2 Web Query Functions 19

Syntax: How to Measure the Length of a Character String

ARGLEN(inlength, infield, 'outfield')

where:

inlength
Integer

Is the length of the field containing the character string, or a field that contains the length.

infield
Alphanumeric

Is the name of the field containing the character string.

outfield
Integer

Is the format of the output value enclosed in single quotation marks.

Example: Measuring the Length of a Character String

ARGLEN determines the length of the character string in LAST_NAME and stores the result in
NAME_LEN:

COMPUTE NAME_LEN/I3 = ARGLEN(15, LAST_NAME, 'I3');

BITSON: Determining If a Bit Is On or Off

The BITSON function evaluates an individual bit within a character string to determine whether
it is on or off. If the bit is on, BITSON returns a value of 1; if the bit is off, it returns a value of
0. This function is useful in interpreting multi-punch data, where each punch conveys an item
of information.

Syntax: How to Determine If a Bit Is On or Off

BITSON(bitnumber, string, 'outfield')

where:

bitnumber
Integer

Is the number of the bit to be evaluated, counted from the left-most bit in the character
string.

string
Alphanumeric

BITSON: Determining If a Bit Is On or Off

20 IBM

Is the character string to be evaluated, enclosed in single quotation marks, or a field that
contains the character string. The character string is in multiple eight-bit blocks.

outfield
Integer

Is the format of the output value enclosed in single quotation marks.

Example: Evaluating a Bit in a Field

BITSON evaluates the 24th bit of LAST_NAME and stores the result in BIT_24:

COMPUTE BIT_24/I1 = BITSON(24, LAST_NAME, 'I1');

BYTVAL: Translating a Character to a Decimal Value

The BYTVAL function translates a character to the ASCII, EBCDIC, or Unicode decimal value
that represents it, depending on the operating system.

Syntax: How to Translate a Character

BYTVAL(character, 'outfield')

where:

character
Alphanumeric

Is the character to be translated. You can specify a field that contains the character, or the
character itself enclosed in single quotation marks. If you supply more than one character,
the function evaluates the first.

outfield
Integer

Is the format of the output value enclosed in single quotation marks.

Example: Translating the First Character of a Field

BYTVAL translates the first character of LAST_NAME into its ASCII or EBCDIC decimal value
and stores the result in LAST_INIT_CODE. Since the input string has more than one character,
BYTVAL evaluates the first one.

COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3');

2. Character Functions

Db2 Web Query Functions 21

CHKFMT: Checking the Format of a String

The CHKFMT function checks a character string for incorrect characters or character types. It
compares each character string to a second string, called a mask, by comparing each
character in the first string to the corresponding character in the mask. If all characters in the
character string match the characters or character types in the mask, CHKFMT returns the
value 0. Otherwise, CHKFMT returns a value equal to the position of the first character in the
character string not matching the mask.

If the mask is shorter than the character string, the function checks only the portion of the
character string corresponding to the mask. For example, if you are using a four-character
mask to test a nine-character string, only the first four characters in the string are checked; the
rest are returned as a no match with CHKFMT giving the first non-matching position as the
result.

Syntax: How to Check the Format of a Character String

CHKFMT(numchar, string, 'mask', 'outfield')

where:

numchar
Integer

Is the number of characters being compared to the mask.

string
Alphanumeric

Is the character string to be checked enclosed in single quotation marks, or a field that
contains the character string.

mask
Alphanumeric

Is the mask, which contains the comparison characters enclosed in single quotation
marks.

Some characters in the mask are generic and represent character types. If a character in
the string is compared to one of these characters and is the same type, it matches.
Generic characters are:

A is any letter between A and Z (uppercase or lowercase).

9 is any digit between 0-9.

X is any letter between A-Z or any digit between 0-9.

$ is any character.

CHKFMT: Checking the Format of a String

22 IBM

Any other character in the mask represents only that character. For example, if the third
character in the mask is B, the third character in the string must be B to match.

outfield
Integer

Is the format of the output value enclosed in single quotation marks.

Example: Checking the Format of a Field

CHKFMT examines EMP_ID for nine numeric characters starting with 11 and stores the result
in CHK_ID:

COMPUTE CHK_ID/I3 = CHKFMT(9, EMP_ID, '119999999', 'I3');

CTRAN: Translating One Character to Another

The CTRAN function translates a character within a character string to another character based
on its decimal value. This function is especially useful for changing replacement characters to
unavailable characters, or to characters that are difficult to input or unavailable on your
keyboard.

To use CTRAN, you must know the decimal equivalent of the characters in internal machine
representation.

In Unicode configurations, this function uses values in the range:

0 to 255 for 1-byte characters.

256 to 65535 for 2-byte characters.

65536 to 16777215 for 3-byte characters.

16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

Syntax: How to Translate One Character to Another

CTRAN(charlen, string, decimal, decvalue, 'outfield')

where:

charlen
Integer

Is the number of characters in the string, or a field that contains the length.

string
Alphanumeric

2. Character Functions

Db2 Web Query Functions 23

Is the character string to be translated enclosed in single quotation marks, or the field that
contains the character string.

decimal
Integer

Is the ASCII or EBCDIC decimal value of the character to be translated.

decvalue
Integer

Is the ASCII or EBCDIC decimal value of the character to be used as a substitute for
decimal.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Translating Spaces to Underscores on an EBCDIC Platform

CTRAN translates the spaces in ADDRESS_LN3 (EBCDIC decimal value 64) to underscores
(EBCDIC decimal value 109) and stores the result in ALT_ADDR:

COMPUTE ALT_ADDR/A20 = CTRAN(20, ADDRESS_LN3, 64, 109, 'A20');

CTRFLD: Centering a Character String

The CTRFLD function centers a character string within a field. The number of leading spaces is
equal to or one less than the number of trailing spaces.

CTRFLD is useful for centering the contents of a field and its report column, or a heading that
consists only of an embedded field. HEADING CENTER centers each field value including
trailing spaces. To center the field value without the trailing spaces, first center the value
within the field using CTRFLD.

Limit: Using CTRFLD in a styled report (StyleSheets feature) generally negates the effect of
CTRFLD unless the item is also styled as a centered element. Also, if you are using CTRFLD on
a platform for which the default font is proportional, either use a non-proportional font, or issue
SET STYLE=OFF before running the request.

CTRFLD: Centering a Character String

24 IBM

Syntax: How to Center a Character String

CTRFLD(string, length, 'outfield')

where:

string
Alphanumeric

Is the character string enclosed in single quotation marks, or a field that contains the
character string.

length
Integer

Is the number of characters in string and outfield, or a field that contains the length. This
argument must be greater than 0. A length less than 0 can cause unpredictable results.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Centering a Field

CTRFLD centers LAST_NAME and stores the result in CENTER_NAME:

COMPUTE CENTER_NAME/A12 = CTRFLD(LAST_NAME, 12, 'A12');

EDIT: Extracting or Adding Characters

The EDIT function extracts characters from or adds characters to an alphanumeric string. It can
extract a substring from different parts of the parent string, and can also insert characters
from a parent string into another substring. For example, it can extract the first two characters
and the last two characters of a string to form a single substring.

EDIT works by comparing the characters in a mask to the characters in a source field. When it
encounters a nine in the mask, EDIT copies the corresponding character from the source field
to the new field. When it encounters a dollar sign in the mask, EDIT ignores the corresponding
character in the source field. When it encounters any other character in the mask, EDIT copies
that character to the corresponding position in the new field. EDIT does not require an outfield
argument because the result is obviously alphanumeric and its size is determined from the
mask value.

EDIT can also convert the format of a field. For information on converting a field with EDIT, see
EDIT: Converting the Format of a Field.

2. Character Functions

Db2 Web Query Functions 25

Syntax: How to Extract or Add Characters

EDIT(fieldname, 'mask');

where:

fieldname
Alphanumeric

Is the source field.

Is the string to extract characters from. It should be at least as long as the mask.

mask
Alphanumeric

Is a character string enclosed in single quotation marks. The length of the mask, excluding
any characters other than nine and $, determines the length of the output field.

Example: Extracting and Adding a Character to a Field

EDIT extracts the first initial from the FIRST_NAME field and stores the result in FIRST_INIT.
EDIT also adds dashes to the EMP_ID field and stores the result in EMPIDEDIT:

COMPUTE FIRST_INIT/A1 = EDIT(FIRST_NAME, '9$$$$$$$$$'); AND
COMPUTE EMPIDEDIT/A11 = EDIT(EMP_ID, '999-99-9999');

GETTOK: Extracting a Substring (Token)

The GETTOK function divides a character string into substrings, called tokens. A specific
character, called a delimiter, occurs in the string and separates the string into tokens. GETTOK
returns the token specified by the token_number. GETTOK ignores leading and trailing blanks
in the parent character string.

For example, suppose you want to extract the fourth word from a sentence. Use the space
character for a delimiter and four for the token_number. GETTOK divides the sentence into
words using this delimiter, then extracts the fourth word. If the string is not divided by the
delimiter, use the PARAG function for this purpose.

Syntax: How to Extract a Substring (Token)

GETTOK(infield, inlen, token_number, 'delim', outlen, 'outfield')

where:

infield
Alphanumeric

Is the field containing the parent character string.

GETTOK: Extracting a Substring (Token)

26 IBM

inlen
Integer

Is the length of the parent string in characters. If this argument is less than or equal to 0,
the function returns spaces.

token_number
Integer

Is the number of the token to extract. If this argument is positive, the tokens are counted
from left to right. If this argument is negative, the tokens are counted from right to left. For
example, -2 extracts the second token from the right. If this argument is 0, the function
returns spaces. Leading and trailing null tokens are ignored.

delim
Alphanumeric

Is the delimiter in the parent string enclosed in single quotation marks. If you specify more
than one character, only the first character is used.

outlen
Integer

Is the maximum size of the token. If this argument is less than or equal to 0, the function
returns spaces. If the token is longer than this argument, it is truncated; if it is shorter, it
is padded with trailing spaces.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. The delimiter is not
included in the token.

Example: Extracting a Token From a Field

GETTOK extracts the last token from ADDRESS_LN3 and stores the result in LAST_TOKEN:

COMPUTE LAST_TOKEN/A10 = GETTOK(ADDRESS_LN3, 20, -1, ' ', 10, 'A10');

LCWORD: Converting a Character String to Mixed Case

The LCWORD function converts the letters in a character string to mixed case. It converts every
alphanumeric character to lowercase except the first letter of each new word and the first letter
after a single or double quotation mark. For example, O'CONNOR is converted to O'Connor and
JACK'S to Jack'S.

2. Character Functions

Db2 Web Query Functions 27

If LCWORD encounters a number in the character string, it treats it as an uppercase character
and continues to convert the following alphabetic characters to lowercase. The result of
LCWORD is a word with an initial uppercase character followed by lowercase characters.

Syntax: How to Convert a Character String to Mixed Case

LCWORD(length, string, 'outfield')

where:

length
Integer

Is the length in characters of the character string or field to be converted, or a field that
contains the length.

string
Alphanumeric

Is the character string to be converted enclosed in single quotation marks, or a field
containing the character string.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. The length must be
greater than or equal to the length of length.

Example: Converting a Character String to Mixed-Case

LCWORD converts the LAST_NAME field to mixed-case and stores the result in MIXED_CASE:

COMPUTE MIXED_CASE/A15 = LCWORD(15, LAST_NAME, 'A15');

LCWORD2: Converting a Character String to Mixed-Case

The LCWORD2 function converts the letters in a character string to mixed-case by converting
every alphanumeric character to lowercase except the first letter of each new word. If
LCWORD2 encounters a lone single quotation mark, the next letter is converted to lowercase.
For example, 'SMITH' would be changed to 'Smith' and JACK'S would be changed to Jack's.

LCWORD2: Converting a Character String to Mixed-Case

28 IBM

Syntax: How to Convert a Character String to Mixed-Case

LCWORD2(length, string, 'outfield')

where:

length
Integer

Is the length in characters of the character string or field to be converted, or a field that
contains the length.

string
Alphanumeric

Is the character string to be converted, or a temporary field that contains the string.

outfield
Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The length must be greater than or equal to the length of length.

Example: Converting a Character String to Mixed-Case

Use the COMPUTE or DEFINED dialog in the report development tools or the Synonym Editor in
Developer Workbench to perform a conversion where LCWORD2 converts the string
O'CONNOR’s to mixed-case:

MYVAL1/A10='O'CONNOR'S';
LC2/A10 = LCWORD2(10, MYVAL1, 'A10');

The report output for these fields:

MYVAL1 LC2
------ ---
O'CONNOR'S O'Connor's

LCWORD3: Converting a Character String to Mixed-Case

The LCWORD3 function converts the letters in a character string to mixed-case by converting
the first letter of each word to uppercase and converting every other letter to lowercase. In
addition, a single quotation mark indicates that the next letter should be converted to
uppercase as long as it is neither followed by a blank nor the last character in the input string.

For example, 'SMITH' would be changed to 'Smith' and JACK'S would be changed to Jack's.

2. Character Functions

Db2 Web Query Functions 29

Syntax: How to Convert a Character String to Mixed-Case Using LCWORD3

LCWORD3(length, string, output)

where:

length

Integer

Is the length, in characters, of the character string or field to be converted, or a field that
contains the length.

string

Alphanumeric

Is the character string to be converted, or a field that contains the string.

output

Alphanumeric

Is the name of the field that contains the result, or the format of the output value enclosed
in single quotation marks. The length must be greater than or equal to the length of length.

Example: Converting a Character String to Mixed-Case Using LCWORD3

Use the Compute or Define dialog box in the report development tools or the Synonym Editor in
Developer Workbench to perform a conversion where LCWORD3 converts the strings
O'CONNOR’s and o’connor’s to mixed-case:

MYVAL1/A10='O'CONNOR'S';
MYVAL2/A10='o'connor's';
LC1/A10 = LCWORD3(10, MYVAL1, 'A10');
LC2/A10 = LCWORD3(10, MYVAL2, 'A10');

On the output, the letter C after the first single quotation mark is in uppercase because it is
not followed by a blank and is not the final letter in the input string. The letter s after the
second single quotation mark is in lowercase because it is the last character in the input
string:

MYVAL1 LC1 MYVAL2 LC2
------ --- ------ ---
O'CONNOR'S O'Connor's o'connor's O'Connor's

LJUST: Left-Justifying a Character String

The LJUST function left-justifies a character string within a field. All leading spaces become
trailing spaces.

LJUST: Left-Justifying a Character String

30 IBM

LJUST will not have any visible effect in a report that uses StyleSheets (SET STYLE=ON) unless
you center the item.

Syntax: How to Left-Justify a Character String

LJUST(length, string, 'outfield')

where:

length
Integer

Is the length in characters of string and outfield, or a field that contains the length.

string
Alphanumeric

Is the character string to be justified, or a field that contains the string.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Left-Justifying a Field

LJUST left-justifies the XNAME field and stores the result in YNAME:

COMPUTE YNAME/A25 = LJUST(15, XNAME, 'A25');

LOCASE: Converting Text to Lowercase

The LOCASE function converts alphanumeric text to lowercase.

Syntax: How to Convert Text to Lowercase

LOCASE(length, string, 'outfield')

where:

length
Integer

Is the length in characters of string and outfield, or a field that contains the length. The
length must be greater than 0 and the same for both arguments; otherwise, an error
occurs.

string
Alphanumeric

2. Character Functions

Db2 Web Query Functions 31

Is the character string to be converted in single quotation marks, or a field that contains
the string.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. The field name can
be the same as string.

Example: Converting a Field to Lowercase

LOCASE converts the LAST_NAME field to lowercase and stores the result in LOWER_NAME:

COMPUTE LOWER_NAME/A15 = LOCASE(15, LAST_NAME, 'A15');

OVRLAY: Overlaying a Character String

The OVRLAY function overlays a base character string with a substring.

Syntax: How to Overlay a Character String

OVRLAY(string1, stringlen, string2, sublen, position, 'outfield')

where:

string1
Alphanumeric

Is the base character string.

stringlen
Integer

Is the length in characters of string1 and outfield, or a field that contains the length. If this
argument is less than or equal to 0, unpredictable results occur.

string2
Alphanumeric

Is the substring that will overlay string1.

sublen
Integer

Is the length of string2, or a field that contains the length. If this argument is less than or
equal to 0, the function returns spaces.

position
Integer

OVRLAY: Overlaying a Character String

32 IBM

Is the position in the base string at which the overlay begins. If this argument is less than
or equal to 0, the function returns spaces. If this argument is larger than stringlen, the
function returns the base string.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. If the overlaid string
is longer than the output field, the string is truncated to fit the field.

Example: Replacing Characters in a Character String

OVRLAY replaces the last three characters of EMP_ID with CURR_JOBCODE to create a new
security identification code and stores the result in NEW_ID:

COMPUTE NEW_ID/A9 = OVRLAY(EMP_ID, 9, CURR_JOBCODE, 3, 7, 'A9');

PARAG: Dividing Text Into Smaller Lines

The PARAG function divides a line of text into smaller lines by marking them with a delimiter. It
scans a specific number of characters from the beginning of the line and replaces the last
space in the group scanned with the delimiter. It then scans the next group of characters in
the line, starting from the delimiter, and replaces the last space in this group with a second
delimiter. It repeats this process until reaching the end of the line.

Each group of characters marked off by the delimiter becomes a sub-line. The GETTOK function
can then place the sub-lines into different fields. If the function does not find any spaces in the
group it scans, it replaces the first character after the group with the delimiter. Therefore,
make sure that no word of text is longer than the number of characters scanned (the maximum
sub-line length).

If the input lines of text are roughly equal in length, you can keep the sub-lines equal by
specifying a sub-line length that evenly divides into the length of the text lines. For example, if
the text lines are 120 characters long, divide each of them into two sub-lines of 60 characters
or three sub-lines of 40 characters. This technique enables you to print lines of text in
paragraph form.

However, if you divide the lines evenly, you may create more sub-lines than you intend. For
example, suppose you divide 120-character text lines into two lines of 60 characters
maximum, but one line is divided so that the first sub-line is 50 characters and the second is
55. This leaves room for a third sub-line of 15 characters. To correct this, insert a space (using
weak concatenation) at the beginning of the extra sub-line, then append this sub-line (using
strong concatenation) to the end of the one before it.

2. Character Functions

Db2 Web Query Functions 33

Syntax: How to Divide Text Into Smaller Lines

PARAG(length, string, 'delim', subsize, 'outfield')

where:

length
Integer

Is the length in characters of string and outfield, or a field that contains the length.

string
Alphanumeric

Is the text enclosed in single quotation marks, or a field that contains the text.

delim
Alphanumeric

Is the delimiter enclosed in single quotation marks. Choose a character that does not
appear in the text.

subsize
Integer

Is the maximum length of each sub-line.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Dividing Text Into Smaller Lines

PARAG divides ADDRESS_LN2 into smaller lines of not more than ten characters using a
comma as the delimiter. It then stores the result in PARA_ADDR:

COMPUTE PARA_ADDR/A20 = PARAG(20, ADDRESS_LN2, ',', 10, 'A20');

POSIT: Finding the Beginning of a Substring

The POSIT function finds the starting position of a substring within a larger string. For example,
the starting position of the substring DUCT in the string PRODUCTION is four. If the substring is
not in the parent string, the function returns the value 0.

POSIT: Finding the Beginning of a Substring

34 IBM

Syntax: How to Find the Beginning of a Substring

POSIT(parent, inlength, substring, sublength, 'outfield')

where:

parent
Alphanumeric

Is the parent character string enclosed in single quotation marks, or a field that contains
the parent character string.

inlength
Integer

Is the length of the parent character string in characters, or a field that contains the
length. If this argument is less than or equal to 0, the function returns a 0.

substring
Alphanumeric

Is the substring whose position you want to find. This can be the substring enclosed in
single quotation marks, or the field that contains the string.

sublength
Integer

Is the length of substring. If this argument is less than or equal to 0, or if it is greater than
inlength, the function returns a 0.

outfield
Integer

Is the format of the output value enclosed in single quotation marks.

Example: Finding the Position of a Letter

POSIT determines the position of the first capital letter I in LAST_NAME and stores the result
in I_IN_NAME:

COMPUTE I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2');

PTOA: Packed Decimal to Alphanumeric Conversion

The PTOA function converts a number from numeric format to alphanumeric format. It retains
the decimal positions of the number and right-justifies it with leading spaces. You can also add
edit options to a number converted by PTOA.

2. Character Functions

Db2 Web Query Functions 35

When using PTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a P12.2C format is converted to A14. If the output
format is not large enough, the right-most characters are truncated.

Reference: Packed Decimal to Alphanumeric Conversion

 PTOA(number, '(format)', output)

where:

number

Numeric P (packed-decimal) or F or D (single and double precision floating-point)
Is the number to be converted.

format

Alphanumeric
Is the format of the number enclosed in parenthesis.

output

Alphanumeric

The length of this argument must be greater than the length of number and must account for
edit options and a possible negative sign. For example, converting from packed to
alphanumeric format converts PGROSS from packed-decimal to alphanumeric format.

PTOA(PGROSS, '(P12.2)', 'A14');

REVERSE: Reversing Characters in a Character String

The REVERSE function reverses the characters in a character string.

Syntax: How to Reverse Characters in a Character String

REVERSE(length, string, 'outfield')

where:

length
Integer

Is the length in characters of string and outfield, or a field that contains the length.

string
Alphanumeric

Is the text enclosed in single quotation marks, or a field that contains the text.

REVERSE: Reversing Characters in a Character String

36 IBM

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Reversing the Characters in a String

REVERSE reverses the characters in PRODCAT and stores the result in REVERSE_NAME:

COMPUTE REVERSE_NAME/A15 = REVERSE(15, PRODCAT, 'A15');

RJUST: Right-Justifying a Character String

The RJUST function right-justifies a character string. All trailing blacks become leading blanks.
This is useful when you display alphanumeric fields containing numbers.

RJUST does not have any visible effect in a report that uses StyleSheets (SET STYLE=ON)
unless you center the item. Also, if you use RJUST on a platform on which StyleSheets are
turned on by default, issue SET STYLE=OFF before running the request.

Syntax: How to Right-Justify a Character String

RJUST(length, string, 'outfield')

where:

length
Integer

Is the length in characters of string and outfield, or a field that contains the length. The
lengths must be the same to avoid justification problems.

string
Alphanumeric

Is the character string, or a field that contains the character string enclosed in single
quotation marks.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Right-Justifying a Field

RJUST right-justifies the LAST_NAME field and stores the result in RIGHT_NAME:

COMPUTE RIGHT_NAME/A15 = RJUST(15, LAST_NAME, 'A15');

2. Character Functions

Db2 Web Query Functions 37

SOUNDEX: Comparing Character Strings Phonetically

The SOUNDEX function searches for a character string phonetically without regard to spelling.
It converts character strings to four character codes. The first character must be the first
character in the string. The last three characters represent the next three significant sounds in
the character string.

To conduct a phonetic search, do the following:

1. Use SOUNDEX to translate data values from the field you are searching for to the phonetic
codes.

2. Use SOUNDEX to translate your best guess target string to a phonetic code. Remember
that the spelling of your target string need be only approximate; however, the first letter
must be correct.

3. Use WHERE or IF criteria to compare the temporary fields created in Step 1 to the
temporary field created in Step 2.

Syntax: How to Compare Character Strings Phonetically

SOUNDEX(inlength, string, 'outfield')

where:

inlength
2-byte Alphanumeric

Is the length, in characters, of string, or a field that contains the length. It can be a number
enclosed in single quotation marks, or a field containing the number. The number must be
from 01 to 99, expressed with two digits (for example '01'); a number larger than 99
causes the function to return asterisks (*) as output.

string
Alphanumeric

Is the character string enclosed in single quotation marks, or a field that contains the
character string.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

SOUNDEX: Comparing Character Strings Phonetically

38 IBM

Example: Comparing Character Strings Phonetically

The following request creates three fields:

PHON_NAME contains the phonetic code of employee last names.

PHON_COY contains the phonetic code of your guess, MICOY.

PHON_MATCH compares the guess with the phonetic code.

COMPUTE PHON_NAME/A4 = SOUNDEX('15', LAST_NAME, 'A4'); AND
COMPUTE PHON_COY/A4 WITH LAST_NAME = SOUNDEX('15', 'MICOY', 'A4'); AND
COMPUTE PHON_MATCH/A3 = IF PHON_NAME IS PHON_COY THEN 'YES' ELSE 'NO';

SPELLNM: Spelling Out a Dollar Amount

The SPELLNM function spells out an alphanumeric string or numeric value containing two
decimal places as dollars and cents. For example, the value 32.50 is THIRTY TWO DOLLARS
AND FIFTY CENTS.

Syntax: How to Spell Out a Dollar Amount

SPELLNM(outlength, number, 'outfield')

where:

outlength
Integer

Is the length of outfield in characters, or a field that contains the length.

If you know the maximum value of number, use the following table to determine the value
of outlength:

If number is less than... ...outlength should be

$10 37

$100 45

$1,000 59

$10,000 74

$100,000 82

2. Character Functions

Db2 Web Query Functions 39

If number is less than... ...outlength should be

$1,000,000 96

number
Alphanumeric or Decimal (9.2)

Is the number to be spelled out.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Spelling Out a Dollar Amount

SPELLNM spells out the values in CURR_SAL and stores the result in AMT_IN_WORDS:

COMPUTE AMT_IN_WORDS/A82 = SPELLNM(82, CURR_SAL, 'A82');

SUBSTR: Extracting a Substring

The SUBSTR function extracts a substring based on where it begins and its length in the
parent string. SUBSTR can vary the position of the substring depending on the values of other
fields.

Syntax: How to Extract a Substring

SUBSTR(inlength, parent, start, end, sublength, 'outfield')

where:

inlength
Integer

Is the length of the parent string in characters, or a field that contains the length.

parent
Alphanumeric

Is the parent string enclosed in single quotation marks, or the field containing the parent
string.

start
Integer

Is the starting position of the substring in the parent string. If this argument is less than
one, the function returns spaces.

SUBSTR: Extracting a Substring

40 IBM

end
Integer

Is the ending position of the substring. If this argument is less than start or greater than
inlength, the function returns spaces.

sublength
Integer

Is the length of the substring (normally end - start + 1). If sublength is longer than end -
start +1, the substring is padded with trailing spaces. If it is shorter, the substring is
truncated. This value should be the declared length of outfield. Only sublength characters
will be processed.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Extracting a String

POSIT determines the position of the first letter I in LAST_NAME and stores the result in
I_IN_NAME. SUBSTR then extracts three characters beginning with the letter I from
LAST_NAME, and stores the results in I_SUBSTR.

COMPUTE I_IN_NAME/I2 = POSIT(LAST_NAME, 15, 'I', 1, 'I2'); AND
COMPUTE I_SUBSTR/A3 = SUBSTR(15, LAST_NAME, I_IN_NAME, I_IN_NAME+2, 3,
'A3');

UPCASE: Converting Text to Uppercase

The UPCASE function converts a character string to uppercase. It is useful for sorting on a field
that contains both mixed-case and uppercase values. Sorting on a mixed-case field produces
incorrect results because the sorting sequence in EBCDIC always places lowercase letters
before uppercase letters, while the ASCII sorting sequence always places uppercase letters
before lowercase. To obtain correct results, define a new field with all of the values in
uppercase, and sort on that.

Syntax: How to Convert Text to Uppercase

UPCASE(length, input, 'outfield')

where:

length
Integer

Is the length in characters of input and outfield.

2. Character Functions

Db2 Web Query Functions 41

input
Alphanumeric

Is the character string enclosed in single quotation marks, or the field containing the
character string.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Converting a Mixed-Case Field to Uppercase

UPCASE converts the LAST_NAME_MIXED field to uppercase and stores the result in
LAST_NAME_UPPER:

COMPUTE LAST_NAME_UPPER/A15 = UPCASE(15, LAST_NAME_MIXED, 'A15') ;

UPCASE: Converting Text to Uppercase

42 IBM

Chapter3
Simplified Character Functions

Simplified character functions have streamlined parameter lists, similar to those used by
SQL functions. In some cases, these simplified functions provide slightly different
functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

In this chapter:

CHAR_LENGTH: Returning the Length in Characters of a String

DIGITS: Converting a Number to a Character String

LOWER: Returning a String With All Letters Lowercase

LPAD: Left-Padding a Character String

LTRIM: Removing Blanks From the Left End of a String

POSITION: Returning the First Position of a Substring in a Source String

RPAD: Right-Padding a Character String

RTRIM: Removing Blanks From the Right End of a String

SUBSTRING: Extracting a Substring From a Source String

TOKEN: Extracting a Token From a String

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

UPPER: Returning a String With All Letters Uppercase

Db2 Web Query Functions 43

CHAR_LENGTH: Returning the Length in Characters of a String

The CHAR_LENGTH function returns the length, in characters, of a string. In Unicode
environments, this function uses character semantics, so that the length in characters may not
be the same as the length in bytes. If the string includes trailing blanks, these are counted in
the returned length. Therefore, if the format source string is type An, the returned value will
always be n.

Syntax: How to Return the Length of a String in Characters

CHAR_LENGTH(string)

where:

string

Alphanumeric

Is the string whose length is returned.

The data type of the returned length value is Integer.

Example: Returning the Length of a String

The following request against the EMPLOYEE data source creates a virtual field named
LASTNAME of type A15V that contains the LAST_NAME with the trailing blanks removed. It then
uses CHAR_LENGTH to return the number of characters.

DEFINE FILE EMPLOYEE
LASTNAME/A15V = RTRIM(LAST_NAME);
END
TABLE FILE EMPLOYEE
SUM LAST_NAME NOPRINT AND COMPUTE
NAME_LEN/I3 = CHAR_LENGTH(LASTNAME);
BY LAST_NAME
ON TABLE SET PAGE NOPAGE
END

CHAR_LENGTH: Returning the Length in Characters of a String

44 IBM

The output is:

 LAST_NAME NAME_LEN
 --------- --------
 BANNING 7
 BLACKWOOD 9
 CROSS 5
 GREENSPAN 9
 IRVING 6
 JONES 5
 MCCOY 5
 MCKNIGHT 8
 ROMANS 6
 SMITH 5
 STEVENS 7

DIGITS: Converting a Number to a Character String

Given a number, DIGITS converts it to a character string of the specified length. The format of
the field that contains the number must be Integer.

Syntax: How to Convert a Number to a Character String

DIGITS(number,length)

where:

number

Integer

Is the number to be converted, stored in a field with data type Integer.

length

Integer between 1 and 10

Is the length of the returned character string. If length is longer than the number of digits
in the number being converted, the returned value is padded on the left with zeros. If
length is shorter than the number of digits in the number being converted, the returned
value is truncated on the left.

3. Simplified Character Functions

Db2 Web Query Functions 45

Example: Converting a Number to a Character String

The following request against the WF_RETAIL_LITE data source converts -123.45 and
ID_PRODUCT to character strings:

DEFINE FILE WF_RETAIL_LITE
MEAS1/I8=-123.45;
DIG1/A6=DIGITS(MEAS1,6) ;
DIG2/A6=DIGITS(ID_PRODUCT,6) ;
END
TABLE FILE WF_RETAIL_LITE
PRINT MEAS1 DIG1
ID_PRODUCT DIG2
BY PRODUCT_SUBCATEG
WHERE PRODUCT_SUBCATEG EQ 'Flat Panel TV'
ON TABLE SET PAGE NOPAGE
END

DIGITS: Converting a Number to a Character String

46 IBM

The output is:

3. Simplified Character Functions

Db2 Web Query Functions 47

Reference: Usage Notes for DIGITS

Only I format numbers will be converted. D, P, and F formats generate error messages and
should be converted to I before using the DIGITS function. The limit for the number that can
be converted is 2 GB.

Negative integers are turned into positive integers.

Integer formats with decimal places are truncated.

DIGITS is not supported in Dialogue Manager.

LOWER: Returning a String With All Letters Lowercase

The LOWER function takes a source string and returns a string of the same data type with all
letters translated to lowercase.

Syntax: How to Return a String With All Letters Lowercase

LOWER(string)

where:

string

Alphanumeric

Is the string to convert to lowercase.

The returned string is the same data type and length as the source string.

Example: Converting a String to Lowercase

In the following request against the EMPLOYEE data source, LOWER converts the LAST_NAME
field to lowercase and stores the result in LOWER_NAME:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
LOWER_NAME/A15 = LOWER(LAST_NAME);
ON TABLE SET PAGE NOPAGE
END

LOWER: Returning a String With All Letters Lowercase

48 IBM

The output is:

 LAST_NAME LOWER_NAME
 --------- ----------
 STEVENS stevens
 SMITH smith
 JONES jones
 SMITH smith
 BANNING banning
 IRVING irving
 ROMANS romans
 MCCOY mccoy
 BLACKWOOD blackwood
 MCKNIGHT mcknight
 GREENSPAN greenspan
 CROSS cross

LPAD: Left-Padding a Character String

LPAD uses a specified character and output length to return a character string padded on the
left with that character.

Syntax: How to Pad a Character String on the Left

LPAD(string, out_length, pad_character)

where:

string

Fixed length alphanumeric

Is a string to pad on the left side.

out_length

Integer

Is the length of the output string after padding.

pad_character

Fixed length alphanumeric

Is a single character to use for padding.

3. Simplified Character Functions

Db2 Web Query Functions 49

Example: Left-Padding a String

In the following request against the WF_RETAIL data source, LPAD left-pads the
PRODUCT_CATEGORY column with @ symbols:

DEFINE FILE WF_RETAIL
LPAD1/A25 = LPAD(PRODUCT_CATEGORY,25,'@');
DIG1/A4 = DIGITS(ID_PRODUCT,4);
END
TABLE FILE WF_RETAIL
SUM DIG1 LPAD1
BY PRODUCT_CATEGORY
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
TYPE=DATA,FONT=COURIER,SIZE=11,COLOR=BLUE,$
END

The output is:

Reference: Usage Notes for LPAD

To use the single quotation mark (') as the padding character, you must double it and
enclose the two single quotation marks within single quotation marks (LPAD(COUNTRY,
20,''''). You can use an amper variable in quotation marks for this parameter, but you
cannot use a field, virtual or real.

Input can be fixed or variable length alphanumeric.

Output, when optimized to SQL, will always be data type VARCHAR.

LPAD: Left-Padding a Character String

50 IBM

If the output is specified as shorter than the original input, the original data will be
truncated, leaving only the padding characters. The output length can be specified as a
positive integer or an unquoted &variable (indicating a numeric).

LTRIM: Removing Blanks From the Left End of a String

The LTRIM function removes all blanks from the left end of a string.

Syntax: How to Remove Blanks From the Left End of a String

LTRIM(string)

where:

string

Alphanumeric

Is the string to trim on the left.

The data type of the returned string is AnV, with the same maximum length as the source
string.

Example: Removing Blanks From the Left End of a String

In the following request against the MOVIES data source, the DIRECTOR field is right-justified
and stored in the RDIRECTOR virtual field. Then LTRIM removes leading blanks from the
RDIRECTOR field:

DEFINE FILE MOVIES
RDIRECTOR/A17 = RJUST(17, DIRECTOR, 'A17');
 END
TABLE FILE MOVIES
PRINT RDIRECTOR AND
COMPUTE
TRIMDIR/A17 = LTRIM(RDIRECTOR);
WHERE DIRECTOR CONTAINS 'BR'
ON TABLE SET PAGE NOPAGE
END

The output is:

 RDIRECTOR TRIMDIR
 --------- -------
 ABRAHAMS J. ABRAHAMS J.
 BROOKS R. BROOKS R.
 BROOKS J.L. BROOKS J.L.

3. Simplified Character Functions

Db2 Web Query Functions 51

POSITION: Returning the First Position of a Substring in a Source String

The POSITION function returns the first position (in characters) of a substring in a source
string.

Syntax: How to Return the First Position of a Substring in a Source String

POSITION(pattern, string)

where:

pattern

Alphanumeric

Is the substring whose position you want to locate. The string can be as short as a single
character, including a single blank.

string

Alphanumeric

Is the string in which to find the pattern.

The data type of the returned value is Integer.

Example: Returning the First Position of a Substring

In the following request against the EMPLOYEE data source, POSITION determines the position
of the first capital letter I in LAST_NAME and stores the result in I_IN_NAME:

TABLE FILE EMPLOYEE
PRINT LAST_NAME AND COMPUTE
I_IN_NAME/I2 = POSITION('I', LAST_NAME);
ON TABLE SET PAGE NOPAGE
END

POSITION: Returning the First Position of a Substring in a Source String

52 IBM

The output is:

 LAST_NAME I_IN_NAME
 --------- ---------
 STEVENS 0
 SMITH 3
 JONES 0
 SMITH 3
 BANNING 5
 IRVING 1
 ROMANS 0
 MCCOY 0
 BLACKWOOD 0
 MCKNIGHT 5
 GREENSPAN 0
 CROSS 0

RPAD: Right-Padding a Character String

RPAD uses a specified character and output length to return a character string padded on the
right with that character.

Syntax: How to Pad a Character String on the Right

RPAD(string, out_length, pad_character)

where:

string

Alphanumeric

Is a string to pad on the right side.

out_length

Integer

Is the length of the output string after padding.

pad_character

Alphanumeric

Is a single character to use for padding.

3. Simplified Character Functions

Db2 Web Query Functions 53

Example: Right-Padding a String

In the following request against the WF_RETAIL data source, RPAD right-pads the
PRODUCT_CATEGORY column with @ symbols:

DEFINE FILE WF_RETAIL
RPAD1/A25 = RPAD(PRODUCT_CATEGORY,25,'@');
DIG1/A4 = DIGITS(ID_PRODUCT,4);
END
TABLE FILE WF_RETAIL
SUM DIG1 RPAD1
BY PRODUCT_CATEGORY
ON TABLE SET PAGE NOPAGE
ON TABLE SET STYLE *
TYPE=DATA,FONT=COURIER,SIZE=11,COLOR=BLUE,$
END

The output is:

Reference: Usage Notes for RPAD

The input string can be data type AnV, VARCHAR, TX, and An.

Output can only be AnV or An.

RPAD: Right-Padding a Character String

54 IBM

When working with relational VARCHAR columns, there is no need to trim trailing spaces
from the field if they are not desired. However, with An and AnV fields derived from An
fields, the trailing spaces are part of the data and will be included in the output, with the
padding being placed to the right of these positions. You can use TRIM or TRIMV to remove
these trailing spaces prior to applying the RPAD function.

RTRIM: Removing Blanks From the Right End of a String

The RTRIM function removes all blanks from the right end of a string.

Syntax: How to Remove Blanks From the Right End of a String

RTRIM(string)

where:
string

Alphanumeric

Is the string to trim on the right.

The data type of the returned string is AnV, with the same maximum length as the source
string.

Example: Removing Blanks From the Right End of a String

The following request against the MOVIES data source creates the field DIRSLASH, that
contains a slash at the end of the DIRECTOR field. Then it creates the TRIMDIR field, which
trims the trailing blanks from the DIRECTOR field and places a slash at the end of that field:

TABLE FILE MOVIES
PRINT DIRECTOR NOPRINT AND
COMPUTE
DIRSLASH/A18 = DIRECTOR|'/';
TRIMDIR/A17V = RTRIM(DIRECTOR)|'/';
WHERE DIRECTOR CONTAINS 'BR'
ON TABLE SET PAGE NOPAGE
END

On the output, the slashes show that the trailing blanks in the DIRECTOR field were removed in
the TRIMDIR field:

 DIRSLASH TRIMDIR
 -------- -------
 ABRAHAMS J. / ABRAHAMS J./
 BROOKS R. / BROOKS R./
 BROOKS J.L. / BROOKS J.L./

3. Simplified Character Functions

Db2 Web Query Functions 55

SUBSTRING: Extracting a Substring From a Source String

The SUBSTRING function extracts a substring from a source string. If the ending position you
specify for the substring is past the end of the source string, the position of the last character
of the source string becomes the ending position of the substring.

Syntax: How to Extract a Substring From a Source String

SUBSTRING(string, position, length)

where:

string

Alphanumeric

Is the string from which to extract the substring. It can be a field, a literal in single
quotation marks (‘), or a variable.

position

Positive Integer

Is the starting position of the substring in string.

length

Integer

Is the limit for the length of the substring. The ending position of the substring is
calculated as position + length - 1. If the calculated position beyond the end of the source
string, the position of the last character of string becomes the ending position.

The data type of the returned substring is AnV.

Example: Extracting a Substring From a Source String

In the following request, POSITION determines the position of the first letter I in LAST_NAME
and stores the result in I_IN_NAME. SUBSTRING, then extracts three characters beginning with
the letter I from LAST_NAME and stores the results in I_SUBSTR.

TABLE FILE EMPLOYEE
PRINT
COMPUTE
I_IN_NAME/I2 = POSITION('I', LAST_NAME); AND
COMPUTE
I_SUBSTR/A3 =
SUBSTRING(LAST_NAME, I_IN_NAME, I_IN_NAME+2);
BY LAST_NAME
ON TABLE SET PAGE NOPAGE
END

SUBSTRING: Extracting a Substring From a Source String

56 IBM

The output is:

 LAST_NAME I_IN_NAME I_SUBSTR
 --------- --------- --------
 BANNING 5 ING
 BLACKWOOD 0 BL
 CROSS 0 CR
 GREENSPAN 0 GR
 IRVING 1 IRV
 JONES 0 JO
 MCCOY 0 MC
 MCKNIGHT 5 IGH
 ROMANS 0 RO
 SMITH 3 ITH
 3 ITH
 STEVENS 0 ST

TOKEN: Extracting a Token From a String

The token function extracts a token (substring) from a string of characters. The tokens are
separated by a delimiter character and specified by a token number reflecting the position of
the token in the string.

Syntax: How to Extract a Token From a String

TOKEN(string, delimiter, number)

where:

string

Fixed length alphanumeric

Is the character string from which to extract the token.

delimiter

Fixed length alphanumeric

Is a single character delimiter.

number

Integer

Is the token number to extract.

3. Simplified Character Functions

Db2 Web Query Functions 57

Example: Extracting a Token From a String

TOKEN extracts the second token from the PRODUCT_SUBCATEG column, where the delimiter
is the letter P:

DEFINE FILE WF_RETAIL_LITE
TOK1/A20 =TOKEN(PRODUCT_SUBCATEG,'P',2);
END
TABLE FILE WF_RETAIL_LITE
SUM TOK1 AS Token
BY PRODUCT_SUBCATEG
ON TABLE SET PAGE NOPAGE
END

TOKEN: Extracting a Token From a String

58 IBM

The output is:

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

The TRIM_ function removes all occurrences of a single character from either the beginning or
end of a string, or both.

3. Simplified Character Functions

Db2 Web Query Functions 59

Note:

Leading and trailing blanks count as characters. If the character you want to remove is
preceded (for leading) or followed (for trailing) by a blank, the character will not be removed.
Alphanumeric fields that are longer than the number of characters stored within them are
padded with trailing blanks.

The function will be optimized when run against a relational DBMS that supports trimming
the character and location specified.

Syntax: How to Remove a Leading Character, Trailing Character, or Both From a String

TRIM_(where, pattern, string)

where:

where

Keyword

Defines where to trim the source string. Valid values are:

LEADING, which removes leading occurrences.

TRAILING, which removes trailing occurrences.

BOTH, which removes leading and trailing occurrences.

pattern

Alphanumeric

Is a single character, enclosed in single quotation marks ('), whose occurrences are to be
removed from string. For example, the character can be a single blank (‘ ‘).

string

Alphanumeric

Is the string to be trimmed.

The data type of the returned string is AnV.

TRIM_: Removing a Leading Character, Trailing Character, or Both From a String

60 IBM

Example: Trimming a Character From a String

In the following request, TRIM_ removes leading occurrences of the character ‘B’ from the
DIRECTOR field:

TABLE FILE MOVIES
PRINT DIRECTOR AND
COMPUTE
TRIMDIR/A17 = TRIM_(LEADING, 'B', DIRECTOR);
WHERE DIRECTOR CONTAINS 'BR'
ON TABLE SET PAGE NOPAGE
END

The output is:

 DIRECTOR TRIMDIR
 -------- -------
 ABRAHAMS J. ABRAHAMS J.
 BROOKS R. ROOKS R.
 BROOKS J.L. ROOKS J.L.

UPPER: Returning a String With All Letters Uppercase

The UPPER function takes a source string and returns a string of the same data type with all
letters translated to uppercase.

Syntax: How to Return a String With All Letters Uppercase

UPPER(string)

where:

string

Alphanumeric

Is the string to convert to uppercase.

The returned string is the same data type and length as the source string.

3. Simplified Character Functions

Db2 Web Query Functions 61

Example: Converting Letters to Uppercase

In the following request, LCWORD converts LAST_NAME to mixed case. Then UPPER converts
the LAST_NAME_MIXED field to uppercase:

DEFINE FILE EMPLOYEE
LAST_NAME_MIXED/A15=LCWORD(15, LAST_NAME, 'A15');
LAST_NAME_UPPER/A15=UPPER(LAST_NAME_MIXED) ;
END
TABLE FILE EMPLOYEE
PRINT LAST_NAME_UPPER AND FIRST_NAME
BY LAST_NAME_MIXED
WHERE CURR_JOBCODE EQ 'B02' OR 'A17' OR 'B04';
ON TABLE SET PAGE NOPAGE
END

The output is:

 LAST_NAME_MIXED LAST_NAME_UPPER FIRST_NAME
 --------------- --------------- ----------
 Banning BANNING JOHN
 Blackwood BLACKWOOD ROSEMARIE
 Cross CROSS BARBARA
 Mccoy MCCOY JOHN
 Mcknight MCKNIGHT ROGER
 Romans ROMANS ANTHONY

UPPER: Returning a String With All Letters Uppercase

62 IBM

Chapter4
Data Source and Decoding Functions

Data source and decoding functions retrieve data source values and assign values based
on the value of an input field.

In this chapter:

DB_EXPR: Inserting an SQL Expression into a Request

DECODE: Decoding Values

LAST: Retrieving the Preceding Value

DB_EXPR: Inserting an SQL Expression into a Request

The DB_EXPR function inserts a native SQL expression exactly as entered into the native SQL
generated for a Web Query or SQL language request.

You can use the DB_EXPR function in a DEFINE command, a DEFINE in a Master File, a WHERE
clause, or in an SQL statement. It can be used in a COMPUTE command if the request is an
aggregate request (uses the SUM, WRITE, or ADD command) and has a single display
command. The expression must return a single value.

Syntax: How to Insert an SQL Expression into a Request With DB_EXPR

DB_EXPR(native_SQL_expression)

where:

native_SQL_expression

Is a partial native SQL string that is valid to insert into the SQL generated by the request.
The SQL string must have double quotation marks (") around each field reference.

Reference: Usage Notes for the DB_EXPR Function

Any request that includes one or more DB_EXPR functions must be for a synonym that has
a relational SUFFIX.

Field references in the native SQL expression must be within the current synonym context.

The native SQL expression must be coded inline. SQL read from a file is not supported.

Db2 Web Query Functions 63

DB_EXPR requires using WITH or placing FIELDNAMEs within double quotation marks when
you reference FIELDNAMEs within the function itself. It is recommended to use the double
quotation marks to ensure the FIELDNAME reference in the SQL snippet expression is
qualified appropriately when the translated SQL is created for the request.

FIELDNAMEs specified in the SQL expression are case sensitive.

Example: Multiplying QUANTITY by Two

The below expression multiplies a field named QUANTITY by 2. The FIELDNAME is case
sensitive and enclosed in double quotation marks ("). Note that the FIELDNAME is used in the
expression, not the COLUMN HEADING that is displayed in the right panel of the DEFINE dialog
box, as shown in the following image.

Example: Inserting the Db2 BIGINT and CHAR Functions into a Request

The following syntax uses the DB_EXPR function to call two Db2 functions. It calls the BIGINT
function to convert the squared revenue field to a BIGINT data type, and then uses the CHAR
function to convert that value to alphanumeric.

DB_EXPR(CHAR(BIGINT("REVENUE" * "REVENUE")))

The expression can be entered into a DEFINE or COMPUTE field and can be entered using
InfoAssist+ or the Developer Workbench Synonym Editor.

DB_EXPR: Inserting an SQL Expression into a Request

64 IBM

DECODE: Decoding Values

The DECODE function assigns values based on the coded value of an input field. DECODE is
useful for giving a more meaningful value to a coded value in a field. For example, the field
GENDER may have the code F for female employees and M for male employees for efficient
storage (for example, one character instead of six for female). DECODE expands (decodes)
these values to ensure correct interpretation on a report.

You can use DECODE by supplying values directly in the function or by reading values from a
separate file.

Syntax: How to Supply Values in the Function

DECODE fieldname(code1 result1 code2 result2...[ELSE default]);

where:

fieldname
Alphanumeric or Numeric

Is the name of the input field.

code
Alphanumeric or Numeric

Is the coded value for which DECODE searches. If the value has embedded blanks,
commas, or other special characters, enclose it in single quotation marks. When DECODE
finds the specified value, it assigns the corresponding result.

result
Alphanumeric or Numeric

Is the value assigned to a code. If the value has embedded blanks or commas or contains
a negative number, enclose it in single quotation marks.

default
Alphanumeric or Numeric

Is the value assigned if the code is not found. If you omit a default value, DECODE assigns
a blank or zero to non-matching codes.

You can use up to 40 lines to define the code and result pairs for any given DECODE function,
or 39 lines if you also use an ELSE phrase. Use either a comma or blank to separate the code
from the result, or one pair from another.

4. Data Source and Decoding Functions

Db2 Web Query Functions 65

Example: Supplying Values in the Function

EDIT extracts the first character of the CURR_JOBCODE field, then DECODE returns either
ADMINISTRATIVE or DATA PROCESSING depending on the value extracted.

COMPUTE DEPX_CODE/A1 = EDIT(CURR_JOBCODE, '9$$'); AND
COMPUTE JOB_CATEGORY/A15 = DECODE DEPX_CODE(A 'ADMINISTRATIVE'
B 'DATA PROCESSING') ;

Syntax: How to Read Values From a File

DECODE fieldname(ddname [ELSE default]);

where:

fieldname
Alphanumeric or Numeric

Is the name of the input field.

ddname
Alphanumeric

Is a logical name or a shorthand name that points to the physical file containing the
decoded values.

default
Alphanumeric or Numeric

Is the value assigned if the code is not found. If you omit a default, DECODE assigns a
blank or zero to non-matching codes.

Reference: Guidelines for Reading Values From a File

Each record in the file is expected to contain pairs of elements separated by a comma or
blank.

If each record in the file consists of only one element, this element is interpreted as the
code, and the result becomes either a blank or zero, as needed.

This makes it possible to use the file to hold screening literals referenced in the screening
condition

IF field IS (filename)

and as a file of literals for an IF criteria specified in a computational expression. For
example:

TAKE = DECODE SELECT (filename ELSE 1);
VALUE = IF TAKE IS 0 THEN... ELSE...;

DECODE: Decoding Values

66 IBM

TAKE is 0 for SELECT values found in the literal file and 1 in all other cases. The VALUE
computation is carried out as if the expression had been:

IF SELECT (filename) THEN... ELSE...;

The file can contain up to 32,767 characters in the file.

Leading and trailing blanks are ignored.

The remainder of each record is ignored and can be used for comments or other data. This
convention applies in all cases, except when the file name is HOLD. In that case, the file is
presumed to have been created by the HOLD command, which writes fields in the internal
format, and the DECODE pairs are interpreted accordingly. In this case, extraneous data in
the record is ignored.

Example: Reading Values From a File

DECODE assigns the value 0 to an employee whose EMP_ID appears in the HOLD file and 1
when EMP_ID does not appear in the file.

COMPUTE NOT_IN_LIST/I1 = DECODE EMP_ID(HOLD ELSE 1);

LAST: Retrieving the Preceding Value

The LAST function retrieves the preceding value for a field.

The effect of LAST depends on whether it appears in a DEFINE or COMPUTE command:

In a DEFINE command, the LAST value applies to the previous record retrieved from the
data source before sorting takes place.

In a COMPUTE command, the LAST value applies to the record in the previous line of the
internal matrix.

Syntax: How to Retrieve the Preceding Value

LAST fieldname

where:

fieldname
Alphanumeric or Numeric

Is the field name.

4. Data Source and Decoding Functions

Db2 Web Query Functions 67

Example: Retrieving the Preceding Value

LAST retrieves the previous value of the DEPARTMENT field to determine whether to restart the
running total of salaries by department. If the previous value equals the current value,
CURR_SAL is added to RUN_TOT to generate a running total of salaries within each
department.

COMPUTE RUN_TOT/D12.2M = IF DEPARTMENT EQ LAST DEPARTMENT THEN
 (RUN_TOT + CURR_SAL) ELSE CURR_SAL ;

LAST: Retrieving the Preceding Value

68 IBM

Chapter5
Date and Time Functions

Date and time functions manipulate date and time values.

When using standard date and time functions, you need to understand the settings that
alter the behavior of these functions, as well as the acceptable formats and how to
supply values in these formats.

You can affect the behavior of date and time functions by defining which days of the
week are work days and which are not. Then, when you use a date function involving
work days, dates that are not work days are ignored.

AYM: Adding or Subtracting Months to or From Dates

The AYM function adds months to or subtracts months from a date in year-month format. You
can convert a date to this format using the CHGDAT or EDIT function.

Syntax: How to Add or Subtract Months to or From a Date

AYM(indate, months, 'outfield')

where:

indate
Integer (I4, I4YM, I6, or I6YYM)

Is the original date in year-month format, the name of a field that contains the date, or an
expression that returns the date. If the date is not valid, the function returns a 0.

months
Integer

Is the number of months you are adding to or subtracting from the date. To subtract
months, use a negative number.

outfield
Integer (I4YM or I6YYM)

Is the format of the output value enclosed in single quotation marks.

Db2 Web Query Functions 69

Tip: If the input date is in integer year-month-day format (I6YMD or I8YYMD), divide the
date by 100 to convert to year-month format and set the result to an integer. This drops
the day portion of the date, which is now after the decimal point.

Example: Adding Months to a Date

The COMPUTE command converts the dates in HIRE_DATE from year-month-day to year-month
format and stores the result in HIRE_MONTH. AYM then adds six months to HIRE_MONTH and
stores the result in AFTER6MONTHS.

COMPUTE HIRE_MONTH/I4YM = HIRE_DATE/100; AND
COMPUTE AFTER6MONTHS/I4YM = AYM(HIRE_MONTH, 6, 'I4YM');

AYMD: Adding or Subtracting Days to or From a Date

The AYMD function adds days to or subtracts days from a date in year-month-day format. You
can convert a date to this format using the CHGDAT or EDIT function.

If the addition or subtraction of days crosses forward or backward into another century, the
century digits of the output year are adjusted.

Syntax: How to Add or Subtract Days to or From a Date

AYMD(indate, days, 'outfield')

where:

indate
Integer (I6, I6YMD, I8, I8YYMD)

If the date is not valid, the function returns a 0.

days
Integer

Is the number of days you are adding to or subtracting from indate. To subtract days, use a
negative number.

outfield
Integer (I6, I6YMD, I8, or I8YYMD)

Is the format of the output value enclosed in single quotation marks. If indate is a field,
outfield must have the same format.

AYMD: Adding or Subtracting Days to or From a Date

70 IBM

Example: Adding Days to a Date

AYMD adds 35 days to each value in the HIRE_DATE field, and stores the result in
AFTER35DAYS:

COMPUTE AFTER35DAYS/I6YMD = AYMD(HIRE_DATE, 35, 'I6YMD');

CHGDAT: Changing How a Date String Displays

The CHGDAT function rearranges the year, month, and day portions of an input character string
representing a date. It may also convert the input string from long to short or short to long date
representation. Long representation contains all three date components: year, month, and day;
short representation omits one or two of the date components, such as year, month, or day.
The input and output date strings are described by display options that specify both the order
of date components (year, month, day) in the date string and whether two or four digits are
used for the year (for example, 97 or 1997). CHGDAT reads an input date character string and
creates an output date character string that represents the same date in a different way.

Note: CHGDAT requires a date character string as input, not a date itself. Convert the input to
a date character string (using the EDIT or DATECVT functions, for example) before applying
CHGDAT.

The order of date components in the date character string is described by display options
comprised of the following characters in your chosen order:

Character Description

D Day of the month (01 through 31).

M Month of the year (01 through 12).

Y[Y] Year. Y indicates a two-digit year (such as 94); YY indicates a four-digit year
(such as 1994).

To spell out the month rather than use a number in the resulting string, append one of the
following characters to the display options for the resulting string:

Character Description

T Displays the month as a three-letter abbreviation.

5. Date and Time Functions

Db2 Web Query Functions 71

Character Description

X Displays the full name of the month.

Display options can consist of up to five display characters. Characters other than those
display options are ignored.

For example: The display options 'DMYY' specify that the date string starts with a two digit
day, then two digit month, then four digit year.

Note: Display options are not date formats.

Reference: Short to Long Conversion

If you are converting a date from short to long representation (for example, from year-month to
year-month-day), the function supplies the portion of the date missing in the short
representation, as shown in the following table:

Portion of Date Missing Portion Supplied by Function

Day (for example, from YM to YMD) Last day of the month.

Month (for example, from Y to YM) Last month of the year (December).

Year (for example, from MD to YMD) The year 99.

Converting year from two-digit to four-
digit (for example, from YMD to YYMD)

If DATEFNS=ON, the century will be determined
by the 100-year window defined by DEFCENT and
YRTHRESH.

If DATEFNS=OFF, the year 19xx is supplied,
where xx is the last two digits in the year.

Syntax: How to Change the Date Display String

CHGDAT('in_display_options', 'out_display_options', date_string,
'outfield')

where:

in_display_options
Alphanumeric (A1 to A5)

CHGDAT: Changing How a Date String Displays

72 IBM

Is a series of up to five display options that describe the layout of date_string. These
options can be stored in an alphanumeric field or supplied as a literal enclosed in single
quotation marks.

out_display_options
Alphanumeric (A1 to A5)

Is a series of up to five display options that describe the layout of the converted date
string. These options can be stored in an alphanumeric field or supplied as a literal
enclosed in single quotation marks.

date_string
Alphanumeric (A2 to A8)

Is the input date character string with date components in the order specified by
in_display_options.

Note that if the original date is in numeric format, you must convert it to a date character
string. If date_string does not correctly represent the date (the date is invalid), the function
returns blank spaces.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Axx, where xx is a number of characters large enough to fit the date string specified by
out_display_options. A17 is long enough to fit the longest date string.

Reference: Usage Notes for CHGDAT

Since CHGDAT uses a date string (as opposed to a date) and returns a date string with up to
17 characters, use the EDIT or DATECVT functions or any other means to convert the date to
or from a date character string.

Example: Converting the Date Display From YMD to MDYYX

The EDIT function changes HIRE_DATE from numeric to alphanumeric format. CHGDAT then
converts each value in ALPHA_HIRE from displaying the components as YMD to MDYYX and
stores the result in HIRE_MDY, which has the format A17. The option X in the output value
displays the full name of the month.

COMPUTE ALPHA_HIRE/A17 = EDIT(HIRE_DATE); AND
COMPUTE HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');

5. Date and Time Functions

Db2 Web Query Functions 73

DA Functions: Converting a Date to an Integer

The DA functions convert a date to the number of days between December 31, 1899 and that
date. By converting a date to the number of days, you can add and subtract dates and
calculate the intervals between them.

There are six DA functions; each one accepts a date in a different format.

Syntax: How to Convert a Date to an Integer

function(indate, 'outfield')

where:

function
Is one of the following:

DADMY converts a date in day-month-year format.

DADYM converts a date in day-year-month format.

DAMDY converts a date in month-day-year format.

DAMYD converts a date in month-year-day format.

DAYDM converts a date in year-day-month format.

DAYMD converts a date in year-month-day format.

indate
Integer or Packed

I or P format with date display options.

Is the date to be converted, or the name of a field that contains the date. The date is
truncated to an integer before conversion.

To specify the year, enter only the last two digits; the function assumes the century
component. If the date is invalid, the function returns a 0.

outfield
Integer

Is the format of the output value enclosed in single quotation marks. The format of the
date returned depends on the function.

DA Functions: Converting a Date to an Integer

74 IBM

Example: Converting Dates and Calculating the Difference Between Them

DAYMD converts the DAT_INC and HIRE_DATE fields to the number of days since December
31, 1899, and the smaller number is then subtracted from the larger number:

COMPUTE DAYS_HIRED/I8 = DAYMD(DAT_INC, 'I8') - DAYMD(HIRE_DATE, 'I8');

DATEADD: Adding or Subtracting a Date Unit to or From a Date

The DATEADD function adds a unit to or subtracts a unit from a date format. A unit is one of
the following:

Year.

Month. If the calculation using the month unit creates an invalid date, DATEADD corrects it
to the last day of the month. For example, adding one month to October 31 yields
November 30, not November 31 since November has 30 days.

Day.

Weekday. When using the weekday unit, DATEADD does not count Saturday or Sunday. For
example, if you add one day to Friday, the result is Monday.

Business day. When using the business day unit, DATEADD uses the BUSDAYS parameter
setting and holiday file to determine which days are working days and disregards the rest. If
Monday is not a working day, then one business day past Sunday is Tuesday.

You add or subtract non day-based dates (for example, YM or YQ) directly without using
DATEADD.

DATEADD works only with full component dates.

Syntax: How to Add or Subtract a Date Unit to or From a Date

DATEADD(date, 'unit', #units)

where:

date
Date

Is a full component date.

unit
Alphanumeric

5. Date and Time Functions

Db2 Web Query Functions 75

Is one of the following enclosed in single quotation marks:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

#units
Integer

Is the number of date units added to or subtracted from date. If this number is not a whole
unit, it is rounded down to the next largest integer.

Example: Adding Weekdays to a Date

DATEADD adds three weekdays to NEW_DATE. In some cases, it adds more than three days
because HIRE_DATE_PLUS_THREE would otherwise be on a weekend.

COMPUTE NEW_DATE/YYMD = HIRE_DATE; AND
COMPUTE HIRE_DATE_PLUS_THREE/YYMD = DATEADD(NEW_DATE, 'WD', 3);

DATECVT: Converting the Format of a Date

The DATECVT function converts the format of a date in an application without requiring an
intermediate calculation. If you supply an invalid format, DATECVT returns a zero or a blank.

The DATECVT function is optimized when using the following date formats: A8YYMD, A8MDYY,
A8DMYY, I8YYMD, I8MDYY, I8DMYY, P8YYMD, P8MDYY, and P8DMYY. Optimized SQL is now
passed to the DB2 Engine for processing when converting dates.

Note: You can use simple assignment instead of calling this function.

Syntax: How to Convert a Date Format

DATECVT(date, 'infmt', 'outfmt')

where:

date
Date

Is the date to be converted. If you supply an invalid date, DATECVT returns zero. When the
conversion is performed, a legacy date obeys any DEFCENT and YRTHRESH parameter
settings supplied for that field.

DATECVT: Converting the Format of a Date

76 IBM

infmt
Alphanumeric

Is the format of the date enclosed in single quotation marks. It is one of the following:

A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

A legacy date format (for example, I6YMD or A8MDYY).

A non-date format (such as I8 or A6). A non-date format in infmt functions as an offset
from the base date of a YYMD field (12/31/1900).

outfmt
Alphanumeric

Is the output format enclosed in single quotation marks. It is one of the following:

A non-legacy date format (for example, YYMD, YQ, M, DMY, JUL).

A legacy date format (for example, I6YMD or A8MDYY).

A non-date format (such as I8 or A6). A non-date format in infmt functions as an offset
from the base date of a YYMD field (12/31/1900).

Example: Converting a YYMD Date to DMY

DATECVT converts 19991231 to 311299 and stores the result in CONV_FIELD:

COMPUTE CONV_FIELD/DMY = DATECVT(19991231, 'I8YYMD', 'DMY');

or

COMPUTE CONV_FIELD/DMY = DATECVT('19991231', 'A8YYMD', 'DMY');

Example: Converting a Legacy Date to Date Format

DATECVT converts HIRE_DATE from I6YMD legacy date format to YYMD date format:

COMPUTE NEW_HIRE_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD');

DATEDIF: Finding the Difference Between Two Dates

The DATEDIF function returns the difference between two dates in units. A unit is one of the
following:

Year. Using the year unit with DATEDIF yields the inverse of DATEADD. If subtracting one
year from date X creates date Y, then the count of years between X and Y is one.
Subtracting one year from February 29 produces the date February 28.

5. Date and Time Functions

Db2 Web Query Functions 77

Month. Using the month unit with DATEDIF yields the inverse of DATEADD. If subtracting
one month from date X creates date Y, then the count of months between X and Y is one. If
the to-date is the end-of-month, then the month difference may be rounded up (in absolute
terms) to guarantee the inverse rule.

If one or both of the input dates is the end of the month, DATEDIF takes this into account.
This means that the difference between January 31 and April 30 is three months, not two
months.

Day.

Weekday. With the weekday unit, DATEDIF does not count Saturday or Sunday when
calculating days. This means that the difference between Friday and Monday is one day.

Business day. With the business day unit, DATEDIF uses the BUSDAYS parameter setting
and holiday file to determine which days are working days and disregards the rest. This
means that if Monday is not a working day, the difference between Friday and Tuesday is
one day.

DATEDIF returns a whole number. If the difference between two dates is not a whole number,
DATEDIF truncates the value to the next largest integer. For example, the number of years
between March 2, 2001, and March 1, 2002, is zero. If the end date is before the start date,
DATEDIF returns a negative number.

You can find the difference between non-day based dates (for example YM or YQ) directly
without using DATEDIF.

Syntax: How to Find the Difference Between Two Dates

DATEDIF(from_date, to_date, 'unit')

where:

from_date
Date

Is the start date from which to calculate the difference. Is a full component date.

to_date
Date

Is the end date from which to calculate the difference.

unit
Alphanumeric

DATEDIF: Finding the Difference Between Two Dates

78 IBM

Is one of the following enclosed in single quotation marks:

Y indicates a year unit.

M indicates a month unit.

D indicates a day unit.

WD indicates a weekday unit.

BD indicates a business day unit.

Example: Finding the Number of Weekdays Between Two Dates

DATECVT converts the legacy dates in HIRE_DATE and DAT_INC to the date format YYMD.
DATEDIF then uses those date formats to determine the number of weekdays between
NEW_HIRE_DATE and NEW_DAT_INC:

COMPUTE NEW_HIRE_DATE/YYMD = DATECVT(HIRE_DATE, 'I6YMD', 'YYMD'); AND
COMPUTE NEW_DAT_INC/YYMD = DATECVT(DAT_INC, 'I6YMD', 'YYMD'); AND
COMPUTE WDAYS_HIRED/I8 = DATEDIF(NEW_HIRE_DATE, NEW_DAT_INC, 'WD');

DATEMOV: Moving a Date to a Significant Point

The DATEMOV function moves a date to a significant point on the calendar.

DATEMOV works only with full component dates.

Syntax: How to Move a Date to a Significant Point

DATEMOV(date, 'move-point')

where:

date
Date

Is a full component date. Is the date to be moved.

move-point
Alphanumeric

Is the significant point the date is moved to enclosed in single quotation marks. An invalid
point results in a return code of zero. Valid values are:

EOM is the end of month.

BOM is the beginning of month.

EOQ is the end of quarter.

5. Date and Time Functions

Db2 Web Query Functions 79

BOQ is the beginning of quarter.

EOY is the end of year.

BOY is the beginning of year.

EOW is the end of week.

BOW is the beginning of week.

NWD is the next weekday.

NBD is the next business day.

PWD is the prior weekday.

PBD is the prior business day.

WD- is a weekday or earlier.

BD- is a business day or earlier.

WD+ is a weekday or later.

BD+ is a business day or later.

A business day calculation is affected by the BUSDAYS and HDAY parameter settings.

Example: Determining the End of the Week

DATEMOV determines the end of the week for each date in NEW_DATE and stores the result in
EOW:

COMPUTE NEW_DATE/YYMDWT = DATECVT(HIRE_DATE, 'I6YMD', 'YYMDWT'); AND
COMPUTE EOW/YYMDWT = DATEMOV(NEW_DATE, 'EOW');

Returning a Date Component as an Integer

The DPART function extracts a specified component from a date field and returns it in numeric
format.

Syntax: How to Extract a Date Component and Return It in Integer Format

DPART(datevalue, 'component', outfield)

where:

datevalue
Date

Is a full component date.

Returning a Date Component as an Integer

80 IBM

component
Alphanumeric

Is the name of the component to be retrieved, enclosed in single quotation marks. Valid
values are the following:

For year: YEAR, YY

For month: MONTH, MM

For day: DAY, for day of month: DAY-OF-MONTH.

For quarter: QUARTER, QQ

outfield
Integer

Is the field that contains the result, or the integer format of the output value enclosed in
single quotation marks.

Example: Extracting Date Components in Integer Format

The following request against the VIDEOTRK data source uses the DPART function to extract
the year, month, and day component from the TRANSDATE field.

DEFINE FILE
 VIDEOTRK
 YEAR/I4 = DPART(TRANSDATE, 'YEAR', 'I4');
 MONTH/I4 = DPART(TRANSDATE, 'MM', 'I4');
 DAY/I4 = DPART(TRANSDATE, 'DAY', 'I4');
END

TABLE FILE VIDEOTRK
PRINT TRANSDATE YEAR MONTH DAY
BY LASTNAME BY FIRSTNAME
WHERE LASTNAME LT 'DIAZ'
END

5. Date and Time Functions

Db2 Web Query Functions 81

The output is:

LASTNAME FIRSTNAME TRANSDATE YEAR MONTH DAY
-------- --------- --------- ---- ----- ---
ANDREWS NATALIA 91/06/19 1991 6 19
 91/06/18 1991 6 18
BAKER MARIE 91/06/19 1991 6 19
 91/06/17 1991 6 17
BERTAL MARCIA 91/06/23 1991 6 23
 91/06/18 1991 6 18
CHANG ROBERT 91/06/28 1991 6 28
 91/06/27 1991 6 27
 91/06/26 1991 6 26
COLE ALLISON 91/06/24 1991 6 24
 91/06/23 1991 6 23
CRUZ IVY 91/06/27 1991 6 27
DAVIS JASON 91/06/24 1991 6 24

DATETRAN: Formatting Dates in International Formats

The DATETRAN function formats dates in international formats.

Syntax: How to Format Dates in International Formats

DATETRAN (indate, '(intype)', '([formatops])', 'lang', outlen, 'outfield')

where:

indate
Is the input date to be formatted. Note that the date format cannot be an
alphanumeric or numeric format with date display options.

intype
Is one of the following character strings indicating the input date components and the
order in which you want them to display, enclosed in single quotation marks and
parentheses.

These are the single component input types:

Single Component
Input Type

Description

'(W)' Day of week component only (original format must have only W
component).

'(M)' Month component only (original format must have only M
component).

DATETRAN: Formatting Dates in International Formats

82 IBM

These are the two-component input types:

Two-Component
Input Type

Description

'(YYM)' Four-digit year followed by month.

'(YM)' Two-digit year followed by month.

'(MYY)' Month component followed by four-digit year.

'(MY)' Month component followed by two-digit year.

These are the three-component input types:

Three- Component
Input Type

Description

'(YYMD)' Four-digit year followed by month followed by day.

'(YMD)' Two-digit year followed by month followed by day.

'(DMYY)' Day component followed by month followed by four-digit year.

'(DMY)' Day component followed by month followed by two-digit year.

'(MDYY)' Month component followed by day followed by four-digit year.

'(MDY)' Month component followed by day followed by two-digit year.

'(MD)' Month component followed by day (derived from three-
component date by ignoring year component).

'(DM)' Day component followed by month (derived from three-
component date by ignoring year component).

5. Date and Time Functions

Db2 Web Query Functions 83

formatops
Is a string of zeros or more formatting options enclosed in parentheses and single
quotation marks. The parentheses and quotation marks are required even if you do
not specify formatting options. Formatting options are as follows:

Options for suppressing initial zeros in month or day numbers.

Options for translating month or day components to full or abbreviated uppercase or
default case (mixed case or lowercase depending on the language) names.

Date delimiter options and options for punctuating a date with commas.

Valid options for suppressing initial zeros in month or day numbers are:

Format Option Description

m Zero-suppresses months (displays numeric months before October
as 1 through 9 rather than 01 through 09).

d Displays days before the tenth of the month as 1 through 9 rather
than 01 through 09.

dp Displays days before the tenth of the month as 1 through 9 rather
than 01 through 09 with a period after the number.

do Displays days before the tenth of the month as 1 through 9. For
English (langcode EN) only, displays an ordinal suffix (st, nd, rd, or
th) after the number.

Valid month and day name translation options are:

Format Option Description

T Displays month as an abbreviated name with no punctuation, all
uppercase.

TR Displays month as a full name, all uppercase.

Tp Displays month as an abbreviated name followed by a period, all
uppercase.

DATETRAN: Formatting Dates in International Formats

84 IBM

Format Option Description

t Displays month as an abbreviated name with no punctuation. The
name is all lowercase or initial uppercase, depending on language
code.

tr Displays month as a full name. The name is all lowercase or initial
uppercase, depending on language code.

tp Displays month as an abbreviated name followed by a period. The
name displays in the default case of the specified language (for
example, all lowercase for French and Spanish, initial uppercase
for English and German).

W Includes an abbreviated day of the week name at the start of the
displayed date, all uppercase with no punctuation.

WR Includes a full day of the week name at the start of the displayed
date, all uppercase.

Wp Includes an abbreviated day of the week name at the start of the
displayed date, all uppercase, followed by a period.

w Includes an abbreviated day of the week name at the start of the
displayed date with no punctuation. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

wr Includes a full day of the week name at the start of the displayed
date. The name displays in the default case of the specified
language (for example, all lowercase for French and Spanish, initial
uppercase for English and German).

wp Includes an abbreviated day of the week name at the start of the
displayed date followed by a period. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

X Includes an abbreviated day of the week name at the end of the
displayed date, all uppercase with no punctuation.

5. Date and Time Functions

Db2 Web Query Functions 85

Format Option Description

XR Includes a full day of the week name at the end of the displayed
date, all uppercase.

Xp Includes an abbreviated day of the week name at the end of the
displayed date, all uppercase, followed by a period.

x Includes an abbreviated day of the week name at the end of the
displayed date with no punctuation. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

xr Includes a full day of the week name at the end of the displayed
date. The name displays in the default case of the specified
language (for example, all lowercase for French and Spanish, initial
uppercase for English and German).

xp Includes an abbreviated day of the week name at the end of the
displayed date followed by a period. The name displays in the
default case of the specified language (for example, all lowercase
for French and Spanish, initial uppercase for English and German).

Valid date delimiter options are:

Format Option Description

B Uses a blank as the component delimiter. This is the default if the
month or day of week is translated or if comma is used.

. Uses a period as the component delimiter.

- Uses a minus sign as the component delimiter. This is the default
when the conditions for a blank default delimiter are not satisfied.

/ Uses a slash as the component delimiter.

| Omits component delimiters.

K Uses appropriate Asian characters as component delimiters.

DATETRAN: Formatting Dates in International Formats

86 IBM

Format Option Description

c Places a comma after the month name (following T, Tp, TR, t, tp, or
tr).

Places a comma and blank after the day name (following W, Wp,
WR, w, wp, or wr).

Places a comma and blank before the day name (following X, XR, x,
or xr).

e Displays the Spanish or Portuguese word de or DE between the day
and month and between the month and year. The case of the word
de is determined by the case of the month name. If the month is
displayed in uppercase, DE is displayed; otherwise de is displayed.
Useful for formats DMY, DMYY, MY, and MYY.

D Inserts a comma after the day number and before the general
delimiter character specified.

Y Inserts a comma after the year and before the general delimiter
character specified.

lang
Is the two-character standard ISO code for the language into which the date should be
translated, enclosed in single quotation marks. Valid language codes are:

'AR' Arabic

'CS' Czech

'DA' Danish

'DE' German

'DU' Dutch

'EN' English

'ES' Spanish

'FI' Finnish

'FR' French

'EL' Greek

'IW' Hebrew

5. Date and Time Functions

Db2 Web Query Functions 87

'IT' Italian

'JA' Japanese

'KO' Korean

'LT' Lithuanian

'NO' Norwegian

'PO' Polish

'PT' Portuguese

'RU' Russian

'SV' Swedish

'TH' Thai

'TR' Turkish

'TW' Chinese (Traditional)

'ZH' Chinese (Simplified)

outlen
Numeric

Is the length of the output field in bytes. If the length is insufficient, an all blank result is
returned. If the length is greater than required, the field is padded with blanks on the right.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Reference: Usage Notes for the DATETRAN Function

The type A output field may contain variable length information, since the lengths of month
names and day names can vary. Also month and day numbers may be either one or two
bytes long if a zero-suppression option is chosen. Unused bytes are filled with blanks.

All invalid and inconsistent inputs result in all blank output strings. Missing data also
results in blank output.

The base dates (1900-12-31 and 1900-12 or 1901-01) are treated as though the
DATEDISPLAY setting were ON (that is, not automatically shown as blanks). To suppress
the printing of base dates, which have an internal integer value of 0, test for 0 before
calling DATETRAN. For example:

DATETRAN: Formatting Dates in International Formats

88 IBM

RESULT/A40 = IF DATE EQ 0 THEN ' ' ELSE
 DATETRAN (DATE, '(YYMD)', '(.t)', 'FR', 40, 'A40');

Valid translated date components are contained in files named DTLNGlng where lng is a
three-character code that specifies the language. These files must be accessible for each
language into which you want to translate dates.

Example: Using the DATETRAN Function

DATETRAN prints the day of the week in the default case for French:

COMPUTE OUT/A8=DATETRAN(DATEW, '(W)', '(wr)', 'FR', 8 , 'A8') ;

Precision for Date-Time Values

In prior releases, the seconds component of a date-time value could be displayed with zero,
three, or six decimal digits. It can now be displayed with zero through nine decimal digits.

In order to control the precision of the seconds component in a date-time format, you can
specify a digit from 1 to 9 in the format.

Syntax: How to Specify Precision for Date-Time Values

Special format components exist for three decimal digits (milliseconds, s), six decimal digits
(microseconds, m), and nine decimal digits (nanoseconds, n). To display:

A Time-only value, when the format includes more than one time display component:

The components must appear in the order hour, minute, second, millisecond,
microsecond, or nanosecond.

The first component must be either hour, minute, or second.

No intermediate component can be skipped. If hour is specified, the next component
must be minute; it cannot be second.

To display a specific number of digits, include the format for seconds (S) followed by the
number of digits to display. Alternatively, you can specify one or more of the following
components: milliseconds (s), microseconds (m), nanoseconds (n).

Both a date component and a time component, the time component is represented by one
character, which specifies the smallest unit of time to be displayed. This character can be
either:

A number from 1 to 9, which specifies the number of decimal digits to display for the
seconds component.

5. Date and Time Functions

Db2 Web Query Functions 89

One of the supported time components. In this case, all higher-order time components
will also be included in the display.

Example: Specifying Precision for Date-Time Values

Use the COMPUTE or DEFINE dialog in the report development tools or the Synonym Editor in
Developer Workbench to perform these transformations. Assume the date is February 5, 1999
and the time is 02:05:25.123456789 a.m. The following defines use of the nanosecond
component or a precision in display formats and function calls:

TRANSDT/HYYMDn = DT(19990205 02:05:25.123456789);
 O_HSsmn/HSsmn = TRANSDT;
 O_HHIS2/HHIS2 = TRANSDT;
 O_HYYMDn/HYYMDn = TRANSDT;
 O_HYYMD1/HYYMD1 = TRANSDT;
 O_HADD/HYYMD9 = HADD(TRANSDT, 'NS', 2, 12, 'HYYMD9');
 O_HCNVRT/A26 = HCNVRT(TRANSDT, '(H23)', 23, 'A26');
 O_HDIFF/D12.2 = HDIFF(O_HADD, TRANSDT, 'NS', 'D12.2');
 TRANSDATE_DATE/YYMD = HDATE(TRANSDT, 'YYMD');
 O_HDTTM/HYYMDn = HDTTM(TRANSDATE_DATE,12, 'HYYMDn');
 O_HEXTR/HHIS9 = HEXTR(TRANSDT, 'n',12, 'HHIS9');
 O_HGETC/HYYMDn = HGETC(12, 'HYYMDn');
 O_HINPUT/HYYMDn = HINPUT(14, O_HCNVRT,12, 'HYYMDn');
 O_HMASK/HYYMDn = HMASK(O_HEXTR, 'HISsmn', TRANSDT, 12, 'HYYMDn');
 O_HMIDNT/HYYMDn = HMIDNT(TRANSDT,12, 'HYYMDn');
 O_HNAME/A10 = HNAME(TRANSDT, 'NANOSECOND', 'A10');
 O_HPART/I10 = HPART(TRANSDT, 'NANOSECOND', 'I10');
 O_HSETPT/HYYMDn = HSETPT(TRANSDT, 'NS', 28, 12,'HYYMDn');
 O_HTIME/P20.2C = HTIME(12,TRANSDT, 'D16');

Output of these Define fields in a report:

TRANSDT 1999/02/05 02:05:25.123456789
O_HSsmn 25.123456789
O_HHIS2 02:05:25.12
O_HYYMDn 1999/02/05 02:05:25.123456789
O_HYYMD1 1999/02/05 02:05:25.1
O_HADD 1999/02/05 02:05:25.123456791
O_HCNVRT 19990205020525123456789
O_HDIFF 2.00
O_HDTTM 1999/02/05 00:00:00.000000000
O_HEXTR 00:00:00.000000789
O_HGETC 2008/06/25 10:26:52.343644000
O_HINPUT 1999/02/05 02:05:25.000000000
O_HMASK 1999/02/05 00:00:00.000456789
O_HMIDNT 1999/02/05 00:00:00.000000000
O_HNAME 123456789
O_HPART 123456789
O_HSETPT 1999/02/05 02:05:25.000000028
O_HTIME 7,525,123,456,789.00

Precision for Date-Time Values

90 IBM

Note:

Field O_HSsmn displays the seconds (S), milliseconds (s), microseconds (m), and
nanoseconds (n) from TRANSDT.

Field O_HHIS2 displays the hours (H), minutes (I), and seconds (S) from TRANSDT. The
seconds are displayed with two decimal digits (2).

Field O_HYYMDn displays TRANSDT with the date in YYMD format and the time down to
nanoseconds (n).

Field O_HYYMD1 displays TRANSDT with the date in YYMD format and the time down to
seconds with one decimal digit (1).

Field O_HADD is created by calling the HADD function to add 2 nanoseconds to the date-
time value in TRANSDT.

Field O_HCNVRT is created by calling the HCNVRT function to convert the date-time value in
TRANSDT to alphanumeric format.

Field O_HDIFF is created by calling the HDIFF function to subtract the date-time value in
TRANSDT from the date-time version in O_HADD.

Field O_HDTTM is created by calling the HDTTM function to create a date-time field by
taking the date from TRANSDATE_DATE and setting the time components to zero.

Field O_HEXTR is created by calling the HEXTR function to extract the nanoseconds (low
order three digits of nine) from TRANSDT and set the remaining components to zero.

Field HGETC is created by calling the HGETC function to retrieve the current date and time
and display them with 9 decimal digits for the seconds component. Note that not all
operating systems return all 9 decimal digits, in which case the digits not returned display
as zeros.

Field O_HINPUT is created by calling the HINPUT function to convert the alphanumeric date-
time string stored in field O_HCNVRT to a date-time value and display it down to the
nanosecond.

Field O_HMASK is created by calling the HMASK function to extract the hours, minutes,
seconds, milliseconds, microseconds, and nanoseconds from O_HEXTR and take the
remaining components from TRANSDT.

Field O_HMIDNT is created by calling the HMIDNT function to retrieve the date from
TRANSDT and set the time to midnight.

5. Date and Time Functions

Db2 Web Query Functions 91

Field O_HNAME is created by calling the HNAME function to retrieve the nanosecond
component from TRANSDT in alphanumeric format.

Field O_HPART is created by calling the HPART function to retrieve the nanosecond
component from TRANSDT in numeric format.

Field O_HSETPT is created by calling the HSETPT function to set the nanoseconds
component to the value 28.

Field O_HTIME is created by calling the HTIME function to convert the time portion of
TRANSDT to the number of nanoseconds.

Reference: Usage Notes for Nanosecond Date-Time Format Component

ACTUAL formats for date-time fields can be up to H12. USAGE formats can be up to H23.

The following date-time functions take a component name as an argument: HADD, HDIFF,
HNAME, HPART, and HSETPT. The component name for nanoseconds for use in these date-
time functions is nanosecond, which can also be abbreviated as ns. In addition, the HEXTR
and HMASK functions have a new component, n, that represents the low order three digits
of nine decimal digits.

The following functions have arguments whose length depends on the precision of the date-
time format:

HADD, HDIFF, HINPUT, HMIDNT, HSETPT, and HTIME have a length argument. The
length can be 8, 10, or 12, where 12 is needed if the seconds value has more than six
decimal digits.

HDTTM and HGETC have an argument for the length of the date-time value, which can
be 8, 10, or 12, where 12 is needed if the seconds value has more than six decimal
digits.

HCNVRT takes one argument that specifies the format of the date-time field to be
converted to alphanumeric and one for the length of that field. The length of these
arguments can be up to 23. The format for the output must be long enough to hold all
of the characters returned.

HTIME converts the time portion of a date-time value to nanoseconds if the first
argument is 12.

Precision for Date-Time Values

92 IBM

DATEPATTERN in the Master File

In some data sources, date values are stored in alphanumeric format without any particular
standard, with any combination of components such as year, quarter, and month, and with any
delimiter. In a sorted report, if such data is sorted alphabetically, the sequence does not make
business sense. To ensure adequate sorting, aggregation, and reporting on date fields, DB2
Web Query can convert the alphanumeric dates into standard DB2 Web Query date format
using a conversion pattern that you can specify in the Master File attribute called
DATEPATTERN.

Each element in the pattern is either a constant character which must appear in the actual
input or a variable that represents a date component. You must edit the USAGE attribute in the
Master File so that it accounts for the date elements in the date pattern. The maximum length
of the DATEPATTERN string is 64.

Specifying Variables in a Date Pattern

The valid date components (variables) are year, quarter, month, day, and day of week. In the
date pattern, variables are enclosed in square brackets (these brackets are not part of the
input or output). Note that if the data contains brackets, you must use an escape character in
the date pattern to distinguish the brackets in the data from the brackets used for enclosing
variables.

Syntax: How to Specify Years in a Date Pattern

[YYYY]

Specifies a 4-digit year.

[YY]

Specifies a 2-digit year.

[yy]

Specifies a zero-suppressed 2-digit year (for example, 8 for 2008).

[by]

Specifies a blank-padded 2-digit year.

Syntax: How to Specify Month Numbers in a Date Pattern

[MM]

Specifies a 2-digit month number.

[mm]

Specifies a zero-suppressed month number.

[bm]

Specifies a blank-padded month number.

5. Date and Time Functions

Db2 Web Query Functions 93

Syntax: How to Specify Month Names in a Date Pattern

[MON]

Specifies a 3-character month name in uppercase.

[mon]

Specifies a 3-character month name in lowercase.

[Mon]

Specifies a 3-character month name in mixed-case.

[MONTH]

Specifies a full month name in uppercase.

[month]

Specifies a full month name in lowercase.

[Month]

Specifies a full month name in mixed-case.

Syntax: How to Specify Days of the Month in a Date Pattern

[DD]

Specifies a 2-digit day of the month.

[dd]

Specifies a zero-suppressed day of the month.

[bd]

Specifies a blank-padded day of the month.

Syntax: How to Specify Julian Days in a Date Pattern

[DDD]

Specifies a 3-digit day of the year.

[ddd]

Specifies a zero-suppressed day of the year.

[bdd]

Specifies a blank-padded day of the year.

Syntax: How to Specify Day of the Week in a Date Pattern

[WD]

Specifies a 1-digit day of the week.

[DAY]

Specifies a 3-character day name, uppercase.

[day]

Specifies a 3-character day name, lowercase.

DATEPATTERN in the Master File

94 IBM

[Day]

Specifies a 3-character day name, mixed-case.

[WDAY]

Specifies a full day name, uppercase.

[wday]

Specifies a full day name, lowercase.

[Wday]

Specifies a full day name, mixed-case.

For the day of the week, the WEEKFIRST setting defines which day is day 1.

Syntax: How to Specify Quarters in a Date Pattern

[Q]

Specifies a 1-digit quarter number (1, 2, 3, or 4).

For a string like Q2 or Q02, use constants before [Q], for example, Q0[Q].

Specifying Constants in a Date Pattern

Between the variables, you can insert any constant values.

If you want to insert a character that would normally be interpreted as part of a variable, use
the backslash character as an escape character. For example:

Use \[to specify a left square bracket constant character.

Use \\ to specify a backslash constant character.

For a single quotation mark, use two consecutive single quotation marks ('').

Example: Sample Date Patterns

If the date in the data source is of the form CY 2001 Q1, the DATEPATTERN attribute is:

DATEPATTERN = 'CY [YYYY] Q[Q]'

If the date in the data source is of the form Jan 31, 01, the DATEPATTERN attribute is:

DATEPATTERN = '[Mon] [DD], [YY]'

If the date in the data source is of the form APR-06, the DATEPATTERN attribute is:

DATEPATTERN = '[MON]-[YY]'

If the date in the data source is of the form APR - 06, the DATEPATTERN attribute is:

DATEPATTERN = '[MON] - [YY]'

5. Date and Time Functions

Db2 Web Query Functions 95

If the date in the data source is of the form APR '06, the DATEPATTERN attribute is:

DATEPATTERN = '[MON] ''[YY]'

If the date in the data source is of the form APR [06], the DATEPATTERN attribute is:

DATEPATTERN = '[MON] \[[YY]\]' (or '[MON] \[[YY]]'

Note the right square bracket does not require an escape character.

Example: Sorting By an Alphanumeric Date

In the following example, date1.ftm is a sequential file containing the following data:

June 1, '02
June 2, '02
June 3, '02
June 10, '02
June 11, '02
June 12, '02
June 20, '02
June 21, '02
June 22, '02
June 1, '03
June 2, '03
June 3, '03
June 10, '03
June 11, '03
June 12, '03
June 20, '03
June 21, '03
June 22, '03
June 1, '04
June 2, '04
June 3, '04
June 4, '04
June 10, '04
June 11, '04
June 12, '04
June 20, '04
June 21, '04
June 22, '04

In the DATE1 Master File, the DATE1 field has alphanumeric USAGE and ACTUAL formats, each
A18:

FILENAME=DATE1, SUFFIX=FIX,
 DATASET = c:\tst\date1.ftm, $
 SEGMENT=FILE1, SEGTYPE=S0, $
 FIELDNAME=DATE1, ALIAS=E01, USAGE=A18, ACTUAL=A18, $

DATEPATTERN in the Master File

96 IBM

The following request sorts by the DATE1 FIELD:

TABLE FILE DATE1
PRINT DATE1 NOPRINT
BY DATE1
ON TABLE SET PAGE NOPAGE
END

The output shows that the alphanumeric dates are sorted alphabetically, not chronologically:

DATE1

June 1, '02
June 1, '03
June 1, '04
June 10, '02
June 10, '03
June 10, '04
June 11, '02
June 11, '03
June 11, '04
June 12, '02
June 12, '03
June 12, '04
June 2, '02
June 2, '03
June 2, '04
June 20, '02
June 20, '03
June 20, '04
June 21, '02
June 21, '03
June 21, '04
June 22, '02
June 22, '03
June 22, '04
June 3, '02
June 3, '03
June 3, '04
June 4, '04

In order to sort the data correctly, you can add a DATEPATTERN attribute to the Master File
that enables DB2 Web Query to convert the date to a DB2 Web Query date field. You must also
edit the USAGE format to make it a DB2 Web Query date format. To construct the appropriate
pattern, you must account for all of the components in the stored date. The alphanumeric date
has the following variables and constants:

Variable: full month name in mixed-case, [Month].

Constant: blank space.

Variable: zero-suppressed day of the month number, [dd].

5. Date and Time Functions

Db2 Web Query Functions 97

Constant: comma followed by a blank space followed by an apostrophe (coded as two
apostrophes in the pattern).

Variable: two-digit year, [YY].

The edited Master File follows. Note the addition of the DEFCENT attribute to convert the two-
digit year to a four-digit year:

FILENAME=DATE1, SUFFIX=FIX,
 DATASET = c:\tst\date1.ftm, $
 SEGMENT=FILE1, SEGTYPE=S0, $
 FIELDNAME=DATE1, ALIAS=E01, USAGE=A18, ACTUAL=A18, DEFCENT=20,
 DATEPATTERN = '[Month] [dd], ''[YY]', $

Now, issuing the same request produces the following output. Note that DATE1 has been
converted to a DB2 Web Query date in MtrDYY format (as specified in the USAGE format):

DATE1

June 1, 2002
June 2, 2002
June 3, 2002
June 10, 2002
June 11, 2002
June 12, 2002
June 20, 2002
June 21, 2002
June 22, 2002
June 1, 2003
June 2, 2003
June 3, 2003
June 10, 2003
June 11, 2003
June 12, 2003
June 20, 2003
June 21, 2003
June 22, 2003
June 1, 2004
June 2, 2004
June 3, 2004
June 4, 2004
June 10, 2004
June 11, 2004
June 12, 2004
June 20, 2004
June 21, 2004
June 22, 2004

DMY, MDY, YMD: Calculating the Difference Between Two Dates

The DMY, MDY, and YMD functions calculate the difference between two dates in integer,
alphanumeric, or packed format.

DMY, MDY, YMD: Calculating the Difference Between Two Dates

98 IBM

Syntax: How to Calculate the Difference Between Two Dates

function(begin, end)

where:

function
Is one of the following:

DMY calculates the difference between two dates in day-month-year format.

MDY calculates the difference between two dates in month-day-year format.

YMD calculates the difference between two dates in year-month-day format.

begin
Integer, Packed, or Alphanumeric

I, P, or A format with date display options.

Is the beginning date, or the name of a field that contains the date.

end
Integer, Packed, or Alphanumeric

I, P, or A format with date display options.

Is the end date, or the name of a field that contains the date.

Example: Calculating the Number of Days Between Two Dates

YMD calculates the number of days between the dates in HIRE_DATE and DAT_INC:

COMPUTE DIFF/I4 = YMD(HIRE_DATE, FST.DAT_INC);

DOWK and DOWKL: Finding the Day of the Week

The DOWK and DOWKL functions find the day of the week that corresponds to a date. DOWK
returns the day as a three letter abbreviation; DOWKL displays the full name of the day.

Syntax: How to Find the Day of the Week

{DOWK|DOWKL}(indate, 'outfield')

where:

indate
Integer (I6YMD or I8 YMD)

5. Date and Time Functions

Db2 Web Query Functions 99

Is the input date in year-month-day format. If the date is not valid, the function returns
spaces. If the date specifies a two-digit year and DEFCENT and YRTHRESH values have not
been set, the function assumes the 20th century.

outfield
DOWK: Alphanumeric

DOWKL: Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Finding the Day of the Week

DOWK determines the day of the week that corresponds to the value in the HIRE_DATE field
and stores the result in DATED:

COMPUTE DATED/A3 = DOWK(HIRE_DATE, 'A3');

DT Functions: Converting an Integer to a Date

The DT functions convert an integer representing the number of days elapsed since December
31, 1899 to the corresponding date. They are useful when you are performing arithmetic on a
date converted to the number of days. The DT functions convert the result back to a date.

There are six DT functions; each one converts a number into a date of a different format.

Note: When USERFNS is set to LOCAL, DT functions only display a six-digit date.

Syntax: How to Convert an Integer to a Date

function(number, 'outfield')

where:

function
Is one of the following:

DTDMY converts a number to a day-month-year date.

DTDYM converts a number to a day-year-month date.

DTMDY converts a number to a month-day-year date.

DTMYD converts a number to a month-year-day date.

DTYDM converts a number to a year-day-month date.

DTYMD converts a number to a year-month-day date.

DT Functions: Converting an Integer to a Date

100 IBM

number
Integer

Is the number of days since December 31, 1899. The number is truncated to an integer.

outfield
Integer

I6xxx, where xxx corresponds to the function DTxxx in the above list.

Is the format of the output value enclosed in single quotation marks. The output format
depends on the function being used.

Example: Converting an Integer to a Date

DTMDY converts the NEWF field (which was converted to the number of days by DAYMD) to the
corresponding date and stores the result in NEW_HIRE_DATE:

COMPUTE NEWF/I8 WITH EMP_ID = DAYMD(HIRE_DATE, NEWF); AND
COMPUTE NEW_HIRE_DATE/I8MDYY WITH EMP_ID = DTMDY(NEWF, NEW_HIRE_DATE);

FIYR: Obtaining the Financial Year

The FIYR function returns the financial year, also known as the fiscal year, corresponding to a
given calendar date based on the financial year starting date and the financial year numbering
convention.

Syntax: How to Obtain the Financial Year

FIYR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

5. Date and Time Functions

Db2 Web Query Functions 101

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date, 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date, 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

output

I, Y, or YY

The result will be in integer format, or Y or YY. This function returns a year value. In case
of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

FIYR: Obtaining the Financial Year

102 IBM

Example: Obtaining the Financial Year

The following obtains the financial year corresponding to an account period (field PERIOD,
format YYM) and returns the values in each of the supported formats: Y, YY, and I4.

FISCALYY/YY=FIYR(PERIOD,'M', 4,1,'FYE',FISCALYY);
FISCALY/Y=FIYR(PERIOD,'M', 4,1,'FYE',FISCALY);
FISCALI/I4=FIYR(PERIOD,'M', 4,1,'FYE',FISCALI);
END

On the output, note that the period April 2002 (2002/04) is in fiscal year 2003 because the
starting month is April (4), and the FYE numbering convention is used:

Ledger
Account PERIOD FISCALYY FISCALY FISCALI
------- ------ -------- ------- -------
1000 2002/01 2002 02 2002
 2002/02 2002 02 2002
 2002/03 2002 02 2002
 2002/04 2003 03 2003
 2002/05 2003 03 2003
 2002/06 2003 03 2003
2000 2002/01 2002 02 2002
 2002/02 2002 02 2002
 2002/03 2002 02 2002
 2002/04 2003 03 2003
 2002/05 2003 03 2003
 2002/06 2003 03 2003

FIQTR: Obtaining the Financial Quarter

The FIQTR function returns the financial quarter corresponding to a given calendar date based
on the financial year starting date and the financial year numbering convention.

Syntax: How to Obtain the Financial Quarter

FIQTR(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

5. Date and Time Functions

Db2 Web Query Functions 103

lowcomponent

Alphanumeric

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date, 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date, 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

output

I or Q

The result will be in integer format, or Q. This function will return a value of 1 through 4. In
case of an error, zero is returned.

FIQTR: Obtaining the Financial Quarter

104 IBM

Note: February 29 cannot be used as a start day for a financial year.

Example: Obtaining the Financial Quarter

The following obtains the financial quarter corresponding to an employee starting date (field
START_DATE, format YYMD) and returns the values in each of the supported formats: Q and
I1.

FISCALQ/Q=FIQTR(START_DATE,'D',10,1,'FYE',FISCALQ);
FISCALI/I1=FIQTR(START_DATE,'D',10,1,'FYE',FISCALI);

On the output, note that the date, November 12, 1998 (1998/11/12) is in fiscal quarter Q1
because the starting month is October (10):

Last First Starting
Name Name Date FISCALQ FISCALI
---- ----- -------- ------- -------
CHARNEY ROSS 1998/09/12 Q4 4
CHIEN CHRISTINE 1997/10/01 Q1 1
CLEVELAND PHILIP 1996/07/30 Q4 4
CLINE STEPHEN 1998/11/12 Q1 1
COHEN DANIEL 1997/10/05 Q1 1
CORRIVEAU RAYMOND 1997/12/05 Q1 1
COSSMAN MARK 1996/12/19 Q1 1
CRONIN CHRIS 1996/12/03 Q1 1
CROWDER WESLEY 1996/09/17 Q4 4
CULLEN DENNIS 1995/09/05 Q4 4
CUMMINGS JAMES 1993/07/11 Q4 4
CUTLIP GREGG 1997/03/26 Q2 2

FIYYQ: Converting a Calendar Date to a Financial Date

The FIYYQ function returns a financial date containing both the financial year and quarter that
corresponds to a given calendar date. The returned financial date is based on the financial
year starting date and the financial year numbering convention.

Syntax: How to Convert a Calendar Date to a Financial Date

FIYYQ(inputdate, lowcomponent, startmonth, startday, yrnumbering, output)

where:

inputdate

Date

Is the date for which the financial year is returned. The date must be a standard date
stored as an offset from the base date.

5. Date and Time Functions

Db2 Web Query Functions 105

If the financial year does not begin on the first day of a month, the date must have Y(Y), M,
and D components, or Y(Y) and JUL components (note that JUL is equivalent to YJUL).
Otherwise, the date only needs Y(Y) and M components or Y(Y) and Q components.

lowcomponent

Alphanumeric

Is one of the following:

D if the date contains a D or JUL component.

M if the date contains an M component, but no D component.

Q if the date contains a Q component.

startmonth

Numeric

1 through 12 are used to represent the starting month of the financial year, where 1
represents January and 12 represents December. If the low component is Q, the start
month must be 1, 4, 7, or 10.

startday

Numeric

Is the starting day of the starting month, usually 1. If the low component is M or Q, 1 is
required.

yrnumbering

Alphanumeric

Valid values are:

FYE to specify the Financial Year Ending convention. The financial year number is the
calendar year of the ending date of the financial year. For example, when the financial year
starts on October 1, 2008, the date, 2008 November 1 is in FY 2009 Q1 because that
date is in the financial year that ends on 2009 September 30.

FYS to specify the Financial Year Starting convention. The financial year number is the
calendar year of the starting date of the financial year. For example, when the financial
year starts on April 6, 2008, the date, 2008 July 6 is in FY 2008 Q2 because that date is
in the financial year that starts on 2008 April 6.

output

Y[Y]Q or QY[Y]

FIYYQ: Converting a Calendar Date to a Financial Date

106 IBM

In case of an error, zero is returned.

Note: February 29 cannot be used as a start day for a financial year.

Example: Converting a Calendar Date to a Financial Date

The following converts each employee starting date (field START_DATE, format YYMD) to a
financial date containing year and quarter components in all the supported formats: YQ, YYQ,
QY, and QYY.

FISYQ/YQ=FIYYQ(START_DATE,'D',10,1,'FYE',FISYQ);
FISYYQ/YYQ=FIYYQ(START_DATE,'D',10,1,'FYE',FISYYQ);
FISQY/QY=FIYYQ(START_DATE,'D',10,1,'FYE',FISQY);
FISQYY/QYY=FIYYQ(START_DATE,'D',10,1,'FYE',FISQYY);

On the output, note that the date, November 12, 1998 (1998/11/12) is converted to Q1
1999 because the starting month is October (10), and the FYE numbering convention is used:

Last First Starting
Name Name Date FISYQ FISYYQ FISQY FISQYY
---- ----- -------- ----- ------ ----- ------
CHARNEY ROSS 1998/09/12 98 Q4 1998 Q4 Q4 98 Q4 1998
CHIEN CHRISTINE 1997/10/01 98 Q1 1998 Q1 Q1 98 Q1 1998
CLEVELAND PHILIP 1996/07/30 96 Q4 1996 Q4 Q4 96 Q4 1996
CLINE STEPHEN 1998/11/12 99 Q1 1999 Q1 Q1 99 Q1 1999
COHEN DANIEL 1997/10/05 98 Q1 1998 Q1 Q1 98 Q1 1998
CORRIVEAU RAYMOND 1997/12/05 98 Q1 1998 Q1 Q1 98 Q1 1998
COSSMAN MARK 1996/12/19 97 Q1 1997 Q1 Q1 97 Q1 1997
CRONIN CHRIS 1996/12/03 97 Q1 1997 Q1 Q1 97 Q1 1997
CROWDER WESLEY 1996/09/17 96 Q4 1996 Q4 Q4 96 Q4 1996
CULLEN DENNIS 1995/09/05 95 Q4 1995 Q4 Q4 95 Q4 1995
CUMMINGS JAMES 1993/07/11 93 Q4 1993 Q4 Q4 93 Q4 1993
CUTLIP GREGG 1997/03/26 97 Q2 1997 Q2 Q2 97 Q2 1997

GREGDT: Converting From Julian to Gregorian Format

The GREGDT function converts a date in Julian format to Gregorian format (year-month-day).

A date in Julian format is a five- or seven-digit number. The first two or four digits are the year;
the last three digits are the number of the day, counting from January 1. For example, January
1, 1999 in Julian format is either 99001 or 1999001.

5. Date and Time Functions

Db2 Web Query Functions 107

Reference: DATEFNS Settings for GREGDT

GREGDT converts a Julian date to either YMD or YYMD format using the DEFCENT and
YRTHRESH parameter settings to determine the century, if required. GREGDT returns a date as
follows:

DATEFNS Setting I6 or I7 Format I8 Format or Greater

ON YMD YYMD

OFF YMD YMD

Syntax: How to Convert From Julian to Gregorian Format

GREGDT(indate, 'outfield')

where:

indate
Integer (I5 or I7)

Is the Julian date, which is truncated to an integer before conversion. Each value must be
a five- or seven-digit number after truncation. If the date is invalid, the function returns a 0.

outfield
Integer (I6, I8, I6YMD, or I8YYMD)

Is the format of the output value enclosed in single quotation marks.

Example: Converting From Julian to Gregorian Format

GREGDT converts the JULIAN field to YYMD (Gregorian) format.

COMPUTE GREG_DATE/I8 = GREGDT(JULIAN, 'I8');

HADD: Incrementing a Date-Time Value

The HADD function increments a date-time value by a given number of units.

HADD: Incrementing a Date-Time Value

108 IBM

Syntax: How to Increment a Date-Time Value

HADD(value, 'component', increment, length, 'outfield')

where:

value
Date-time

Is the date-time value to be incremented, the name of a date-time field that contains the
value, or an expression that returns the value.

component
Alphanumeric

Is the name of the component to be incremented enclosed in single quotation marks.

Note: WEEKDAY is not a valid component for HADD.

increment
Integer

Is the number of units by which to increment the component, the name of a numeric field
that contains the value, or an expression that returns the value.

length
Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield
Date-time

Is the format of the output value enclosed in single quotation marks.

Example: Incrementing the Month Component of a Date-Time Field

HADD adds two months to each value in TRANSDATE and stores the result in ADD_MONTH. If
necessary, the day is adjusted so that it is valid for the resulting month.

COMPUTE ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS');

HCNVRT: Converting a Date-Time Value to Alphanumeric Format

The HCNVRT function converts a date-time value to alphanumeric format for use with operators
such as EDIT, CONTAINS, and LIKE.

5. Date and Time Functions

Db2 Web Query Functions 109

Syntax: How to Convert a Date-Time Value to Alphanumeric Format

HCNVRT(value, '(fmt)', length, 'outfield')

where:

value
Date-time

Is the date-time value to be converted, the name of a date-time field that contains the
value, or an expression that returns the value.

fmt
Alphanumeric

Is the format of the date-time field enclosed in single quotation marks and parentheses.

length
Integer

Is the length of the alphanumeric field that is returned. You can supply the actual value,
the name of a numeric field that contains the value, or an expression that returns the
value. If length is smaller than the number of characters needed to display the
alphanumeric field, the function returns a blank.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Converting a Date-Time Field to Alphanumeric Format

HCNVRT converts the TRANSDATE field to alphanumeric format. The first function does not
include date-time display options for the field; the second function does for readability. It also
specifies the display of seconds in the input field.

COMPUTE ALPHA_DATE_TIME1/A20 = HCNVRT(TRANSDATE, '(H17)', 17, 'A20'); AND
COMPUTE ALPHA_DATE_TIME2/A20 = HCNVRT(TRANSDATE, '(HYYMDS)', 20, 'A20');

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

The HDATE function converts the date portion of a date-time value to the date format YYMD.
You can then convert the result to other date formats.

HDATE: Converting the Date Portion of a Date-Time Value to a Date Format

110 IBM

Syntax: How to Convert the Date Portion of a Date-Time Value to a Date Format

HDATE(value, 'YYMD')

where:

value
Date-time

Is the date-time value to be converted, the name of a date-time field that contains the
value, or an expression that returns the value.

YYMD

Date

Is the output format. The value must be YYMD. YYMD is a constant value and cannot be
changed in this syntax, although you can change the format in subsequent DEFINEs or
COMPUTEs.

Example: Converting the Date Portion of a Date-Time Field to a Date Format

HDATE converts the date portion of the TRANSDATE field to the date format YYMD:

COMPUTE TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD');

HDIFF: Finding the Number of Units Between Two Date-Time Values

The HDIFF function calculates the number of units between two date-time values.

Syntax: How to Find the Number of Units Between Two Date-Time Values

HDIFF(value1, value2, 'component', 'outfield')

where:

value1
Date-time

Is the end date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

value2
Date-time

Is the start date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

component
Alphanumeric

5. Date and Time Functions

Db2 Web Query Functions 111

Is the name of the component to be used in the calculation enclosed in single quotation
marks. If the component is a week, the WEEKFIRST parameter setting is used in the
calculation.

outfield
Floating point or Decimal

Is the format of the output value enclosed in single quotation marks.

Example: Finding the Number of Days Between Two Date-Time Fields

HDIFF calculates the number of days between the TRANSDATE and ADD_MONTH fields and
stores the result in DIFF_PAYS, which has the format D12.2:

COMPUTE ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS'); AND
COMPUTE DIFF_DAYS/D12.2 = HDIFF(ADD_MONTH, TRANSDATE, 'DAY', 'D12.2');

HDTTM: Converting a Date Value to a Date-Time Value

The HDTTM function converts a date value to a date-time field. The time portion is set to
midnight.

Syntax: How to Convert a Date Value to a Date-Time Value

HDTTM(date, length, 'outfield')

where:

date
Date

Is the date value to be converted, the name of a date field that contains the value, or an
expression that returns the value.

length
Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield
Date-time

Is the format of the output value enclosed in single quotation marks.

HDTTM: Converting a Date Value to a Date-Time Value

112 IBM

Example: Converting a Date Field to a Date-Time Field

HDTTM converts the date field TRANSDATE_DATE to a date-time field:

COMPUTE TRANSDATE_DATE/YYMD = HDATE(TRANSDATE, 'YYMD'); AND
COMPUTE DT2/HYYMDIA = HDTTM(TRANSDATE_DATE, 8, 'HYYMDIA');

HGETC: Storing the Current Date and Time in a Date-Time Field

The HGETC function stores the current date and time in a date-time field. If millisecond or
microsecond values are not available in your operating environment, the function retrieves the
value zero for these components.

Syntax: How to Store the Current Date and Time in a Date-Time Field

HGETC(length, 'outfield')

where:

length
Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield
Date-time

Is the format of the output value enclosed in single quotation marks.

Example: Storing the Current Date and Time in a Date-Time Field

HGETC stores the current date and time in DT2:

COMPUTE DT2/HYYMDm = HGETC(10, 'HYYMDm');

HHMMSS: Retrieving the Current Time

The HHMMSS function retrieves the current time from the operating system as an eight
character string, separating the hours, minutes, and seconds with periods.

5. Date and Time Functions

Db2 Web Query Functions 113

Syntax: How to Retrieve the Current Time

HHMMSS('outfield')

where:

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. The field format must
be at least A8.

Example: Retrieving the Current Time

HHMMSS retrieves the current time:

COMPUTE NOWTIME/A8 = HHMMSS('A8');

HINPUT: Converting an Alphanumeric String to a Date-Time Value

The HINPUT function converts an alphanumeric string to a date-time value.

Syntax: How to Convert an Alphanumeric String to a Date-Time Value

HINPUT(inputlength, 'inputstring', length, 'outfield')

where:

inputlength
Integer

Is the length of the alphanumeric string to be converted. You can supply the actual value,
the name of a numeric field that contains the value, or an expression that returns the
value.

inputstring
Alphanumeric

Is the alphanumeric string to be converted enclosed in single quotation marks, the name
of an alphanumeric field that contains the string, or an expression that returns the string.
The string can consist of any valid date-time input value.

length
Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

HINPUT: Converting an Alphanumeric String to a Date-Time Value

114 IBM

outfield
Date-time

Is the format of the output value enclosed in single quotation marks.

Example: Converting an Alphanumeric String to a Date-Time Value

HCNVRT converts the TRANSDATE field to alphanumeric format, then HINPUT converts the
alphanumeric string to a date-time value:

COMPUTE ALPHA_DATE_TIME/A20 = HCNVRT(TRANSDATE, '(H17)', 17, 'A20'); AND
COMPUTE DT_FROM_ALPHA/HYYMDS = HINPUT(14, ALPHA_DATE_TIME, 8, 'HYYMDS');

HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight

The HMIDNT function changes the time portion of a date-time value to midnight (all zeros by
default). This allows you to compare a date field with a date-time field.

Syntax: How to Set the Time Portion of a Date-Time Value to Midnight

HMIDNT(value, length, 'outfield')

where:

value
Date-time

Is the date-time value whose time is to be set to midnight, the name of a date-time field
that contains the value, or an expression that returns the value.

length
Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield
Date-time

Is the format of the output value enclosed in single quotation marks.

5. Date and Time Functions

Db2 Web Query Functions 115

Example: Setting the Time to Midnight

HMIDNT sets the time portion of the TRANSDATE field to midnight first in the 24-hour system
and then in the 12-hour system:

COMPUTE TRANSDATE_MID_24/HYYMDS = HMIDNT(TRANSDATE, 8, 'HYYMDS'); AND
COMPUTE TRANSDATE_MID_12/HYYMDSA = HMIDNT(TRANSDATE, 8, 'HYYMDSA');

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

The HNAME function extracts a specified component from a date-time value in alphanumeric
format.

Syntax: How to Retrieve a Date-Time Component in Alphanumeric Format

HNAME(value, 'component', 'outfield')

where:

value
Date-time

Is the date-time value from which a component is to be extracted, the name of a date-time
field that contains the value, or an expression that returns the value.

component
Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. The field format must
be at lease A2.

The function converts all other components to strings of digits only. The year is always four
digits, and the hour assumes the 24-hour system.

Example: Retrieving the Week Component in Alphanumeric Format

HNAME returns the week in alphanumeric format from the TRANSDATE field. Changing the
WEEKFIRST parameter setting changes the value of the component.

COMPUTE WEEK_COMPONENT/A10 = HNAME(TRANSDATE, 'WEEK', 'A10');

HNAME: Retrieving a Date-Time Component in Alphanumeric Format

116 IBM

Example: Retrieving the Day Component in Alphanumeric Format

HNAME retrieves the day in alphanumeric format from the TRANSDATE field:

COMPUTE DAY_COMPONENT/A2 = HNAME(TRANSDATE, 'DAY', 'A2');

HPART: Retrieving a Date-Time Component in Numeric Format

The HPART function extracts a specified component from a date-time value and returns it in
numeric format.

Syntax: How to Retrieve a Date-Time Component in Numeric Format

HPART(value, 'component', 'outfield')

where:

value
Date-time

Is a date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

component
Alphanumeric

Is the name of the component to be retrieved enclosed in single quotation marks.

outfield
Integer

Is the format of the output value enclosed in single quotation marks.

Example: Retrieving the Day Component in Numeric Format

HPART retrieves the day in integer format from the TRANSDATE field:

COMPUTE DAY_COMPONENT/I2 = HPART(TRANSDATE, 'DAY', 'I2');

HSETPT: Inserting a Component Into a Date-Time Value

The HSETPT function inserts the numeric value of a specified component into a date-time
value.

5. Date and Time Functions

Db2 Web Query Functions 117

Syntax: How to Insert a Component Into a Date-Time Value

HSETPT(dtfield, 'component', value, length, 'outfield')

where:

dtfield
Date-time

Is a date-time value, the name of a date-time field that contains the value, or an
expression that returns the value.

component
Alphanumeric

Is the name of the component to be inserted enclosed in single quotation marks.

value
Integer

Is the numeric value to be inserted for the requested component, the name of a numeric
field that contains the value, or an expression that returns the value.

length
Integer

Is the length of the returned date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

outfield
Date-time

Is the format of the output value enclosed in single quotation marks.

Example: Inserting the Day Component Into a Date-Time Field

HSETPT inserts the day as 28 into the ADD_MONTH field and stores the result in INSERT_DAY:

COMPUTE ADD_MONTH/HYYMDS = HADD(TRANSDATE, 'MONTH', 2, 8, 'HYYMDS'); AND
COMPUTE INSERT_DAY/HYYMDS = HSETPT(ADD_MONTH, 'DAY', 28, 8, 'HYYMDS');

HTIME: Converting the Time Portion of a Date-Time Value to a Number

The HTIME function converts the time portion of a date-time value to the number of
milliseconds if the first argument is eight, or microseconds if the first argument is ten. To
include microseconds, the input date-time value must be 10-bytes.

HTIME: Converting the Time Portion of a Date-Time Value to a Number

118 IBM

Syntax: How to Convert the Time Portion of a Date-Time Field to a Number

HTIME(length, value, 'outfield')

where:

length
Integer

Is the length of the input date-time value. Valid values are:

8 indicates a time value that includes milliseconds.

10 indicates a time value that includes microseconds.

value
Date-time

Is the date-time value from which to convert the time, the name of a date-time field that
contains the value, or an expression that returns the value.

outfield
Floating point or Decimal

Is the format of the output value enclosed in single quotation marks.

Example: Converting the Time Portion of a Date-Time Field to a Number

HTIME converts the time portion of the TRANSDATE field to the number of milliseconds:

COMPUTE MILLISEC/D12.2 = HTIME(8, TRANSDATE, 'D12.2');

JULDAT: Converting From Gregorian to Julian Format

The JULDAT function converts a date from Gregorian format (year-month-day) to Julian format
(year-day). A date in Julian format is a five- or seven-digit number. The first two or four digits
are the year; the last three digits are the number of the day, counting from January 1. For
example, January 1, 1999 in Julian format is either 99001 or 1999001.

Reference: DATEFNS Settings for JULDAT

JULDAT converts a Gregorian date to either YYNNN or YYYYNNN format, using the DEFCENT
and YRTHRESH parameter settings to determine if the century is required.

5. Date and Time Functions

Db2 Web Query Functions 119

JULDAT returns dates as follows:

DATEFNS Setting I6 or I7 Format I8 Format or Greater

ON YYNNN YYYYNNN

OFF YYNNN YYNNN

Syntax: How to Convert From Gregorian to Julian Format

JULDAT(indate, 'outfield')

where:

indate
Integer (I6, I8, I6YMD, I8YYMD)

Is the date or the name of the field that contains the date in year-month-day format (YMD
or YYMD).

outfield
Integer (I5 or I7)

Is the format of the output value enclosed in single quotation marks.

Example: Converting From Gregorian to Julian Format

JULDAT converts the HIRE_DATE field to Julian format.

COMPUTE JULIAN/I7 = JULDAT(HIRE_DATE, 'I7');

TIMETOTS: Converting a Time to a Timestamp

The TIMETOTS function converts a time to a timestamp, using the current date to supply the
date component of its value. The first argument must be in H (date-time) format. The DATE
component will be set to the current date.

Syntax: How to Convert a Time to a Timestamp

TIMETOTS (time, length, 'outfield')

where:

time
Date-time

TIMETOTS: Converting a Time to a Timestamp

120 IBM

Is the time in a date-time format.

length
Integer

Is the length of the result. This can be one of the following:

8 for time values including milliseconds.

10 for input time values including microseconds.

outfield
Date-time

Is the format of the output value enclosed in single quotation marks.

Example: Converting a Time to a Timestamp

TIMETOTS converts a time argument to a timestamp:

COMPUTE TSTMPSEC/HYYMDS = TIMETOTS(TMSEC, 8, 'HYYMDS'); AND
COMPUTE TSTMPMILLI/HYYMDm = TIMETOTS(TMMILLI, 10, 'HYYMDm');

TODAY: Returning the Current Date

The TODAY function retrieves the current date from the operating system in the format
MM/DD/YY or MM/DD/YYYY. It always returns a date that is current. Therefore, if you are
running an application late at night, use TODAY. You can remove the default embedded
slashes with the EDIT function.

Syntax: How to Retrieve the Current Date

TODAY('outfield')

where:

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. The field format must
be at least A8. The following apply:

If DATEFNS=ON and the format is A8 or A9, TODAY returns the 2-digit year.

If DATEFNS=ON and the format is A10 or greater, TODAY returns the 4-digit year.

If DATEFNS=OFF, TODAY returns the 2-digit year, regardless of the format of outfield.

5. Date and Time Functions

Db2 Web Query Functions 121

Example: Retrieving the Current Date

TODAY retrieves the current date and stores it in the DATE field.

COMPUTE DATE/A10 = TODAY('A10');

YM: Calculating Elapsed Months

The YM function calculates the number of months that elapse between two dates. The dates
must be in year-month format. You can convert a date to this format by using the CHGDAT or
EDIT function.

Syntax: How to Calculate Elapsed Months

YM(fromdate, todate, 'outfield')

where:

fromdate
Integer (I4YM or I6YYM)

Is the start date in year-month format (for example, I4YM). If the date is not valid, the
function returns a 0.

todate
Integer (I4YM or I6YYM)

Is the end date in year-month format. If the date is not valid, the function returns a 0.

outfield
Integer

Is the format of the output value enclosed in single quotation marks.

Note: If fromdate or todate is in integer year-month-day format (I6YMD or I8YYMD), simply
divide by 100 to convert to year-month format and set the result to an integer. This drops
the day portion of the date, which is now after the decimal point.

Example: Calculating Elapsed Months

The COMPUTE commands convert the dates from year-month-day to year-month format; then
YM calculates the difference between the values in the HIRE_DATE/100 and DAT_INC/100
fields:

COMPUTE HIRE_MONTH/I4YM = HIRE_DATE/100; AND
COMPUTE MONTH_INC/I4YM = DAT_INC/100; AND
COMPUTE MONTHS_HIRED/I3 = YM(HIRE_MONTH, MONTH_INC, 'I3');

YM: Calculating Elapsed Months

122 IBM

Chapter6
Simplified Date and Date-Time
Functions

Simplified date and date-time functions have streamlined parameter lists, similar to
those used by SQL functions. In some cases, these simplified functions provide slightly
different functionality than previous versions of similar functions.

The simplified functions do not have an output argument. Each function returns a value
that has a specific data type.

When used in a request against a relational data source, these functions are optimized
(passed to the RDBMS for processing).

Standard date and date-time formats refer to YYMD and HYYMD syntax (dates that are
not stored in alphanumeric or numeric fields). Dates not in these formats must be
converted before they can be used in the simplified functions. Literal date-time values
can be used with the DT function.

All arguments can be either literals, field names, or amper variables.

In this chapter:

DTADD: Incrementing a Date or Date-Time Component

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time
Values

DTPART: Returning a Date or Date-Time Component in Integer Format

DTRUNC: Returning the Start of a Date Period for a Given Date

DTADD: Incrementing a Date or Date-Time Component

Given a date in standard date or date-time format, DTADD returns a new date after adding the
specified number of a supported component. The returned date format is the same as the
input date format.

Syntax: How to Increment a Date or Date-Time Component

DTADD(date, component, increment)

Db2 Web Query Functions 123

where:

date

Date or date-time

Is the date or date-time value to be incremented.

component

Keyword

Is the component to be incremented. Valid components (and acceptable values) are:

YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

WEEK (1-53). This is affected by the WEEKFIRST setting.

DAY (of the Month, 1-31).

HOUR (0-23).

MINUTE (0-59).

SECOND (0-59).

increment

Integer

Is the value (positive or negative) to add to the component.

Example: Incrementing the DAY Component of a Date

The following request against the WF_RETAIL data source adds three days to the employee
date of birth:

DEFINE FILE WF_RETAIL
NEWDATE/YYMD = DTADD(DATE_OF_BIRTH, DAY, 3);
MGR/A3 = DIGITS(ID_MANAGER, 3);
END
TABLE FILE WF_RETAIL
SUM MGR NOPRINT DATE_OF_BIRTH NEWDATE
BY MGR
ON TABLE SET PAGE NOPAGE
END

DTADD: Incrementing a Date or Date-Time Component

124 IBM

The output is:

Reference: Usage Notes for DTADD

Each element must be manipulated separately. Therefore, if you want to add 1 year and 1
day to a date, you need to call the function twice, once for YEAR (you need to take care of
leap years) and once for DAY. The simplified functions can be nested in a single
expression, or created and applied in separate DEFINE or COMPUTE expressions.

With respect to parameter validation, DTADD will not allow anything but a standard date or
a date-time value to be used in the first parameter.

The increment is not checked, and the user should be aware that decimal numbers are not
supported and will be truncated. Any combination of values that increases the YEAR beyond
9999 returns the input date as the value, with no message. If the user receives the input
date when expecting something else, it is possible there was an error.

6. Simplified Date and Date-Time Functions

Db2 Web Query Functions 125

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time
Values

Given two dates in standard date or date-time formats, DTIFF returns the number of given
component boundaries between the two dates. The returned value has integer format for
calendar components or double precision floating point format for time components.

Syntax: How to Return the Number of Component Boundaries

DTDIFF(end_date, start_date, component)

where:

end_date

Date or date-time

Is the ending date in either standard date or date-time format. If this date is given in
standard date format, all time components are assumed to be zero.

start_date

Date or date-time

Is the starting date in either standard date or date-time format. If this date is given in
standard date format, all time components are assumed to be zero.

component

Keyword

Is the component on which the number of boundaries is to be calculated. For example,
QUARTER finds the difference in quarters between two dates. Valid components (and
acceptable values) are:

YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

WEEK (1-53). This is affected by the WEEKFIRST setting.

DAY (of the Month, 1-31).

HOUR (0-23).

MINUTE (0-59).

SECOND (0-59).

DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values

126 IBM

Example: Returning the Number of Years Between Two Dates

The following request against the WF_RETAIL data source calculates employee age when hired:

DEFINE FILE WF_RETAIL
YEARS/I9 = DTDIFF(START_DATE, DATE_OF_BIRTH, YEAR);
END
TABLE FILE WF_RETAIL
PRINT START_DATE DATE_OF_BIRTH YEARS AS 'Hire,Age'
BY EMPLOYEE_NUMBER
WHERE EMPLOYEE_NUMBER CONTAINS 'AA'
ON TABLE SET PAGE NOPAGE
END

The output is:

DTPART: Returning a Date or Date-Time Component in Integer Format

Given a date in standard date or date-time format and a component, DTPART returns the
component value in integer format.

Syntax: How to Return a Date or Date-Time Component in Integer Format

DTPART(date, component)

where:
date

Date or date-time

Is the date in standard date or date-time format.

6. Simplified Date and Date-Time Functions

Db2 Web Query Functions 127

component

Keyword

Is the component to extract in integer format. Valid components (and values) are:

YEAR (1-9999).

QUARTER (1-4).

MONTH (1-12).

WEEK (of the year, 1-53). This is affected by the WEEKFIRST setting.

DAY (of the Month, 1-31).

DAY_OF_YEAR (1-366).

WEEKDAY (day of the week, 1-7). This is affected by the WEEKFIRST setting.

HOUR (0-23).

MINUTE (0-59).

SECOND (0-59).

MILLISECOND (0-999).

MICROSECOND (0-999999).

Example: Extracting the Quarter Component as an Integer

The following request against the WF_RETAIL data source extracts the QUARTER component
from the employee start date:

DEFINE FILE WF_RETAIL
QTR/I2 = DTPART(START_DATE, QUARTER);
END
TABLE FILE WF_RETAIL
PRINT START_DATE QTR AS Quarter
BY EMPLOYEE_NUMBER
WHERE EMPLOYEE_NUMBER CONTAINS 'AH'
ON TABLE SET PAGE NOPAGE
END

DTPART: Returning a Date or Date-Time Component in Integer Format

128 IBM

The output is:

DTRUNC: Returning the Start of a Date Period for a Given Date

Given a date or timestamp and a component, DTRUNC returns the first date within the period
specified by that component.

Syntax: How to Return the First or Last Date of a Date Period

DTRUNC(date_or_timestamp, date_period)

where:

date_or_timestamp

Date or date-time

Is the date or timestamp of interest.

date_period

Is the period whose starting or ending date you want to find. Can be one of the following:

DAY, returns the date that represents the input date (truncates the time portion, if
there is one).

YEAR, returns the date of the first day of the year.

MONTH, returns the date of the first day of the month.

QUARTER, returns the date of the first day in the quarter.

WEEK, returns the date that represents the first date of the given week.

By default, the first day of the week will be Sunday, but this can be changed using the
WEEKFIRST parameter.

6. Simplified Date and Date-Time Functions

Db2 Web Query Functions 129

YEAR_END, returns the last date of the year.

QUARTER_END, returns the last date of the quarter.

MONTH_END, returns the last date of the month.

WEEK_END, returns the last date of the week.

Example: Returning the First Date in a Date Period

In the following request against the WF_RETAIL data source, DTRUNC returns the first date of
the quarter given the start date of the employee:

DEFINE FILE WF_RETAIL
QTRSTART/YYMD = DTRUNC(START_DATE, QUARTER);
END
TABLE FILE WF_RETAIL
PRINT START_DATE QTRSTART AS 'Start,of Quarter'
BY EMPLOYEE_NUMBER
WHERE EMPLOYEE_NUMBER CONTAINS 'AH'
ON TABLE SET PAGE NOPAGE
END

The output is:

DTRUNC: Returning the Start of a Date Period for a Given Date

130 IBM

Chapter7
Format Conversion Functions

Format conversion functions convert fields from one format to another.

In this chapter:

ATODBL: Converting an Alphanumeric String to Double-Precision Format

EDIT: Converting the Format of a Field

FTOA: Converting a Number to Alphanumeric Format

HEXBYT: Converting a Decimal Integer to a Character

ITONUM: Converting a Large Binary Integer to Double-Precision Format

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

ITOZ: Converting a Number to Zoned Format

PCKOUT: Writing a Packed Number of Variable Length

ATODBL: Converting an Alphanumeric String to Double-Precision Format

The ATODBL function converts a number in alphanumeric format to decimal (double-precision)
format.

Syntax: How to Convert an Alphanumeric String to Double-Precision Format

ATODBL(string, length, 'outfield')

where:

string
Alphanumeric

Is the alphanumeric string to be converted, or a field that contains the string.

length
Alphanumeric

Is the two-character length of infield in bytes. This can be a numeric constant, or a field
that contains the value. If you specify a numeric constant, enclose it in single quotation
marks. The maximum value is 15.

Db2 Web Query Functions 131

outfield
Decimal

Is the format of the output value enclosed in single quotation marks.

Example: Converting an Alphanumeric Field to Double-Precision Format

ATODBL converts the EMP_ID field into double-precision format and stores the result in
D_EMP_ID:

COMPUTE D_EMP_ID/D12.2 = ATODBL(EMP_ID, '09', 'D12.2');

EDIT: Converting the Format of a Field

The EDIT function converts an alphanumeric field that contains numeric characters to numeric
format or converts a numeric field to alphanumeric format. It is useful when you need to
manipulate a field using a command that requires a particular format.

When EDIT assigns a converted value to a new field, the format of the new field must
correspond to the format of the returned value. For example, if EDIT converts a numeric field to
alphanumeric format, you must give the new field an alphanumeric format:

DEFINE ALPHAPRICE/A6 = EDIT(PRICE);

EDIT deals with a symbol in the following way:

When an alphanumeric field is converted to numeric format, a sign or decimal point in the
field is acceptable and is stored in the numeric field.

When converting a floating-point or packed-decimal field to alphanumeric format, EDIT
removes the sign, the decimal point, and any number to the right of the decimal point. It
then right-justifies the remaining digits and adds leading zeros to achieve the specified field
length. Converting a number with more than nine significant digits in floating-point or
packed-decimal format may produce an incorrect result.

EDIT also extracts characters from or adds characters to an alphanumeric string. For more
information, see EDIT: Extracting or Adding Characters.

Syntax: How to Convert the Format of a Field

EDIT(fieldname);

where:

fieldname
Alphanumeric or Numeric

EDIT: Converting the Format of a Field

132 IBM

Is the field name.

Example: Converting From Numeric to Alphanumeric Format

EDIT converts HIRE_DATE (a legacy date format) to alphanumeric format. CHGDAT is then able
to use the field, which it expects in alphanumeric format:

COMPUTE ALPHA_HIRE/A17 = EDIT(HIRE_DATE); AND
COMPUTE HIRE_MDY/A17 = CHGDAT('YMD', 'MDYYX', ALPHA_HIRE, 'A17');

FTOA: Converting a Number to Alphanumeric Format

The FTOA function converts a number up to 16 digits long from numeric format to alphanumeric
format. It retains the decimal positions of a number and right-justifies it with leading spaces.
You can also add edit options to a number converted by FTOA.

When using FTOA to convert a number containing decimals to a character string, you must
specify an alphanumeric format large enough to accommodate both the integer and decimal
portions of the number. For example, a D12.2 format is converted to A14. If the output format
is not large enough, decimals are truncated.

Syntax: How to Convert a Number to Alphanumeric Format

FTOA(number, '(format)', 'outfield')

where:

number
Numeric F or D (single and double-precision floating-point)

Is the number to be converted, or the name of the field that contains the number.

format
Alphanumeric

Is the output format of the number enclosed in both single quotation marks and
parentheses. Only floating point single-precision and double-precision formats are
supported. Include any edit options that you want to appear in the output. The D (floating-
point double-precision) format automatically supplies commas.

If you use a field name for this argument, specify the name without quotation marks or
parentheses. If you specify a format, the format must be enclosed in parentheses.

outfield
Alphanumeric

7. Format Conversion Functions

Db2 Web Query Functions 133

Is the format of the output value enclosed in single quotation marks. The length of this
argument must be greater than the length of number and must account for edit options
and a possible negative sign.

Example: Converting From Numeric to Alphanumeric Format

FTOA converts the GROSS field from floating point double-precision to alphanumeric format and
stores the result in ALPHA_GROSS:

COMPUTE ALPHA_GROSS/A15 = FTOA(GROSS, '(D12.2)', 'A15');

HEXBYT: Converting a Decimal Integer to a Character

The HEXBYT function obtains the ASCII, EBCDIC, or Unicode character equivalent of a decimal
integer, depending on your configuration and operating environment. It returns a single
alphanumeric character in the ASCII, EBCDIC, or Unicode character set. You can use this
function to produce characters that are not on your keyboard, similar to the CTRAN function.

In Unicode configurations, this function uses values in the range:

0 to 255 for 1-byte characters.

256 to 65535 for 2-byte characters.

65536 to 16777215 for 3-byte characters.

16777216 to 4294967295 for 4-byte characters (primarily for EBCDIC).

The display of special characters depends on your software and hardware; not all special
characters may appear.

Syntax: How to Convert a Decimal Integer to a Character

HEXBYT(input, 'outfield')

where:

input
Integer

Is the decimal integer to be converted to a single character. In non-Unicode environments,
a value greater than 255 is treated as the remainder of input divided by 256.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

HEXBYT: Converting a Decimal Integer to a Character

134 IBM

Example: Converting a Decimal Integer to a Character

HEXBYT converts LAST_INIT_CODE to its character equivalent and stores the result in
LAST_INIT:

COMPUTE LAST_INIT_CODE/I3 = BYTVAL(LAST_NAME, 'I3'); AND
COMPUTE LAST_INIT/A1 = HEXBYT(LAST_INIT_CODE, 'A1');

ITONUM: Converting a Large Binary Integer to Double-Precision Format

The ITONUM function converts a large binary integer in a data source to double-precision
format. Some programming languages and some data storage systems use large binary integer
formats. However, large binary integers (more than 4 bytes in length) are not supported in the
Master File so they require conversion to double-precision format.

You must specify how many of the right-most bytes in the input field are significant. The result
is an 8-byte double-precision field.

Syntax: How to Convert a Large Binary Integer to Double-Precision Format

ITONUM(maxbytes, infield, 'outfield')

where:

maxbytes
Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign. Valid values are:

5ignores the left-most 3 bytes.

6ignores the left-most 2 bytes.

7ignores the left-most byte.

infield
Alphanumeric

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of the
field must be A8.

outfield
Decimal

Is the format of the output value enclosed in single quotation marks. The format must be
Dn.

7. Format Conversion Functions

Db2 Web Query Functions 135

Example: Converting a Large Binary Integer to Double-Precision Format

ITONUM converts the BINARYFLD field to double-precision format:

COMPUTE MYFLD/D14 = ITONUM(6, BINARYFLD, 'D14');

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

The ITOPACK function converts a large binary integer in a data source to packed-decimal
format. Some programming languages and some data storage systems use double-word binary
integer formats. Large binary integers (more than 4 bytes in length) are not supported in the
Master File so they require conversion to packed-decimal format.

You must specify how many of the right-most bytes in the input field are significant. The result
is an 8-byte packed-decimal field of up to 15 significant numeric positions (for example, P15 or
P16.2).

Limit: For a field defined as 'PIC 9(15) COMP' or the equivalent (15 significant digits), the
maximum number that can be converted is 167,744,242,712,576.

Syntax: How to Convert a Large Binary Integer to Packed-Decimal Format

ITOPACK(maxbytes, infield, 'outfield')

where:

maxbytes
Numeric

Is the maximum number of bytes in the 8-byte binary input field that have significant
numeric data, including the binary sign.

Valid values are:

5 ignores the left-most 3 bytes (up to 11 significant positions).

6 ignores the left-most 2 bytes (up to 14 significant positions).

7 ignores the left-most byte (up to 15 significant positions).

infield
Alphanumeric

Is the field that contains the binary number. Both the USAGE and ACTUAL formats of the
field must be A8.

outfield
Packed

ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format

136 IBM

Is the format of the output value enclosed in single quotation marks. The format must be
Pn or Pn.d.

Example: Converting a Large Binary Integer to Packed-Decimal Format

ITOPACK converts the BINARYFLD field to packed-decimal format:

COMPUTE PACKFLD/P14.4 = ITOPACK(6, BINARYFLD, 'P14.4');

ITOZ: Converting a Number to Zoned Format

The ITOZ function converts a number in numeric format to zoned format. Although a request
cannot process zoned numbers, it can write zoned fields to an extract file for use by an
external program.

Syntax: How to Convert to Zoned Format

ITOZ(outlength, number, 'outfield')

where:

outlength
Integer

Is the length of number in bytes. The maximum number of bytes is 15. The last byte
includes the sign.

number
Numeric

Is the number to be converted, or the field that contains the number. The number is
truncated to an integer before it is converted.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Converting a Number to Zoned Format

ITOZ converts the CURR_SAL field to a zoned format:

COMPUTE ZONE_SAL/A8 = ITOZ(8, CURR_SAL, 'A8');

7. Format Conversion Functions

Db2 Web Query Functions 137

PCKOUT: Writing a Packed Number of Variable Length

The PCKOUT function writes a packed number of variable length to an extract file. When a
request saves a packed number to an extract file, it typically writes it as an 8- or 16-byte field
regardless of its format specification. With PCKOUT, you can vary the field's length between 1
to 16 bytes.

Syntax: How to Write a Packed Number of Variable Length

PCKOUT(infield, outlength, 'outfield')

where:

infield
Numeric

Is the input field that contains the values. The field can be in packed, integer, floating-
point, or double-precision format. If the field is not in integer format, its values are rounded
to the nearest integer.

outlength
Numeric

Is the length of outfield from 1 to 16 bytes.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks. The function returns
the field as alphanumeric although it contains packed data.

Example: Writing a Packed Number of Variable Length

PCKOUT converts the CURR_SAL field to a 5-byte packed field and stores the result in
SHORT_SAL:

COMPUTE SHORT_SAL/A5 = PCKOUT(CURR_SAL, 5, 'A5');

PCKOUT: Writing a Packed Number of Variable Length

138 IBM

Chapter8
Numeric Functions

Numeric functions perform calculations on numeric constants and fields.

In this chapter:

ABS: Calculating Absolute Value

BAR: Producing a Bar Chart

CHKPCK: Validating a Packed Field

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

EXP: Raising e to the Nth Power

INT: Finding the Greatest Integer

LOG: Calculating the Natural Logarithm

MAX and MIN: Finding the Maximum or Minimum Value

SQRT: Calculating the Square Root

ABS: Calculating Absolute Value

The ABS function returns the absolute value of a number.

Syntax: How to Calculate Absolute Value

ABS(argument)

where:

argument
Numeric

Is the value for which the absolute value is returned, the name of a field that contains the
value, or an expression that returns the value. If you use an expression, use parentheses
as needed to ensure the correct order of evaluation.

Db2 Web Query Functions 139

Example: Calculating Absolute Value

The first COMPUTE command creates the DIFF field, then ABS calculates the absolute value of
DIFF:

COMPUTE DIFF/I5 = DELIVER_AMT - UNIT_SOLD; AND
COMPUTE ABS_DIFF/I5 = ABS(DIFF);

BAR: Producing a Bar Chart

The BAR function produces a horizontal bar chart using repeating characters to form each bar.
Optionally, you can create a scale to clarify the meaning of a bar chart by replacing the title of
the column containing the bar with a scale.

Syntax: How to Produce a Bar Chart

BAR(barlength, infield, maxvalue, 'char', 'outfield')

where:

barlength
Numeric

Is the maximum length of the bar in characters. If this value is less than or equal to 0, the
function does not return a bar.

infield
Numeric

Is the data field plotted as a bar chart.

maxvalue
Numeric

Is the maximum value of a bar. This value must be greater than the maximum value stored
in infield. If infield is larger than maxvalue, the function uses maxvalue and returns
a bar of maximum length.

char
Alphanumeric

Is the repeating character that creates the bars enclosed in single quotation marks. If you
specify more than one character, only the first character is used.

outfield
Alphanumeric

BAR: Producing a Bar Chart

140 IBM

Is the format of the output value enclosed in single quotation marks. The output field must
be large enough to contain a bar of maximum length as defined by barlength.

Example: Producing a Bar Chart

BAR creates a bar chart for the CURR_SAL field, and stores the output in SAL_BAR. The bar
created can be no longer than 30 characters long, and the value it represents can be no
greater than 30,000.

COMPUTE SAL_BAR/A30 = BAR(30, CURR_SAL, 30000, '=', SAL_BAR);

CHKPCK: Validating a Packed Field

The CHKPCK function validates the data in a field described as packed format (if available on
your platform). The function prevents a data exception from occurring when a request reads a
field that is expected to contain a valid packed number but does not.

To use CHKPCK:

1. Ensure that the Master File (USAGE and ACTUAL attributes) defines the field as
alphanumeric, not packed. This does not change the field data, which remains packed, but
it enables the request to read the data without a data exception.

2. Call CHKPCK to examine the field. The function returns the output to a field defined as
packed. If the value it examines is a valid packed number, the function returns the value; if
the value is not packed, the function returns an error code.

Syntax: How to Validate a Packed Field

CHKPCK(inlength, infield, error, 'outfield')

where:

inlength
Numeric

Is the length of the packed field. It can be between 1 and 16 bytes.

infield
Alphanumeric

Is the name of the packed field. The field is described as alphanumeric, not packed.

error
Numeric

8. Numeric Functions

Db2 Web Query Functions 141

Is the error code that the function returns if a value is not packed. Choose an error code
outside the range of data. The error code is first truncated to an integer, then converted to
packed format. However, it may appear on a report with a decimal point because of the
format of the output field.

outfield
Packed

Is the format of the output value enclosed in single quotation marks.

Example: Validating Packed Data

CHKPCK validates the values in the PACK_SAL field, and stores the result in the GOOD_PACK
field. Values not in packed format return the error code -999. Values in packed format appear
accurately.

COMPUTE GOOD_PACK/P8CM = CHKPCK(8, PACK_SAL, -999, GOOD_PACK);

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

The MOD functions calculate the remainder from a division. Each function returns the
remainder in a different format.

The functions use the following formula.

remainder = dividend - INT(dividend/divisor) * divisor

DMOD returns the remainder as a decimal number.

FMOD returns the remainder as a floating point number.

IMOD returns the remainder as an integer.

For information on the INT function, see INT: Finding the Greatest Integer.

Syntax: How to Calculate the Remainder From a Division

function(dividend, divisor, 'outfield')

where:

function
Is one of the following:

DMOD returns the remainder as a decimal number.

FMOD returns the remainder as a floating point number.

IMOD returns the remainder as an integer.

DMOD, FMOD, and IMOD: Calculating the Remainder From a Division

142 IBM

dividend
Numeric

Is the number being divided.

divisor
Numeric

Is the number dividing the dividend.

outfield
Numeric

Is the format of the output value enclosed in single quotation marks. The format is
determined by the result returned by the specific function.

Example: Calculating the Remainder From a Division

IMOD divides ACCTNUMBER by 1000 and returns the remainder to LAST3_ACCT:

COMPUTE LAST3_ACCT/I3L = IMOD(ACCTNUMBER, 1000, LAST3_ACCT);

EXP: Raising e to the Nth Power

The EXP function raises the value "e" (approximately 2.72) to a specified power. This function
is the inverse of the LOG function, which returns an argument's logarithm.

EXP calculates the result by adding terms of an infinite series. If a term adds less than .
000001 percent to the sum, the function ends the calculation and returns the result as a
double-precision number.

Syntax: How to Raise e to the Nth Power

EXP(power, 'outfield')

where:

power
Numeric

Is the power to which "e" is raised.

outfield
Floating point or Decimal

Is the format of the output value enclosed in single quotation marks.

Example: Raising e to the Nth Power

EXP raises e to the 2nd power:

8. Numeric Functions

Db2 Web Query Functions 143

COMPUTE E2/D12.2 = EXP(2, 'D12.2');

INT: Finding the Greatest Integer

The INT function returns the integer component of a number.

Syntax: How to Find the Greatest Integer

INT(argument)

where:

argument
Numeric

Is the value for which the integer component is returned, the name of a field that contains
the value, or an expression that returns the value. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation.

Example: Finding the Greatest Integer

INT finds the greatest integer in the DED_AMT field and stores it in INT_DED_AMT:

COMPUTE INT_DED_AMT/I9 = INT(DED_AMT);

LOG: Calculating the Natural Logarithm

The LOG function returns the natural logarithm of a number.

Syntax: How to Calculate the Natural Logarithm

LOG(argument)

where:

argument
Numeric

Is the value for which the natural logarithm is calculated, the name of a field that contains
the value, or an expression that returns the value. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If argument is less than
or equal to 0, LOG returns 0.

INT: Finding the Greatest Integer

144 IBM

Example: Calculating the Natural Logarithm

LOG calculates the logarithm of the CURR_SAL field:

COMPUTE LOG_CURR_SAL/D12.2 = LOG(CURR_SAL);

MAX and MIN: Finding the Maximum or Minimum Value

The MAX and MIN functions return the maximum or minimum value, respectively, from a list of
values.

Syntax: How to Find the Maximum or Minimum Value

{MAX|MIN}(argument1, argument2, ...)

where:

MAX

Returns the maximum value.

MIN

Returns the minimum value.

argument1, argument2
Numeric

Are the values for which the maximum or minimum value is returned, the name of a field
that contains the values, or an expression that returns the values. If you supply an
expression, use parentheses as needed to ensure the correct order of evaluation.

Example: Determining the Minimum Value

MIN returns either the value of the ED_HRS field or the constant 30, whichever is lower:

COMPUTE MIN_EDHRS_30/D12.2 = MIN(ED_HRS, 30);

SQRT: Calculating the Square Root

The SQRT function calculates the square root of a number.

Syntax: How to Calculate the Square Root

SQRT(argument)

where:

argument
Numeric

8. Numeric Functions

Db2 Web Query Functions 145

Is the value for which the square root is calculated, the name of a field that contains the
value, or an expression that returns the value. If you supply an expression, use
parentheses as needed to ensure the correct order of evaluation. If you supply a negative
number, the result is zero.

Example: Calculating the Square Root

SQRT calculates the square root of LISTPR:

COMPUTE SQRT_LISTPR/D12.2 = SQRT(LISTPR);

SQRT: Calculating the Square Root

146 IBM

Chapter9
System Functions

System functions call the operating system to obtain information about the operating
environment.

In this chapter:

FGETENV: Retrieving the Value of an Environment Variable

GETUSER: Retrieving a User ID

FGETENV: Retrieving the Value of an Environment Variable

The FGETENV function retrieves the value of an environment variable and returns it as an
alphanumeric string.

Syntax: How to Retrieve the Value of an Environment Variable

FGETENV(varlength, 'varname', outfieldlen, 'outfield')

where:

varlength
Integer

Is the length of the environment variable name.

varname
Alphanumeric

Is the name of the environment variable.

outfieldlen
Integer

Is the length of the field in which the environment variable's value is stored.

outfield
Alphanumeric

Is the format of the output value enclosed in single quotation marks.

Example: Retrieving the Language Locale

Using the LANG environment variable, FGETENV retrieves the object location for the language
locale:

Db2 Web Query Functions 147

COMPUTE LANG_LOCALE/A40 = FGETENV(4, 'LANG', 40, 'A40');

GETUSER: Retrieving a User ID

The GETUSER function retrieves the ID of the connected user.

Syntax: How to Retrieve a User ID

GETUSER('outfield')

where:

outfield
Alphanumeric

Is the format (at least A8) of the output value enclosed in single quotation marks. The
length depends on the platform on which the function is issued. Provide a length as long
as required for your platform; otherwise, the output will be truncated.

Example: Retrieving a User ID

GETUSER retrieves the user ID of the person running the request:

COMPUTE USERID/A8 = GETUSER('A8');

GETUSER: Retrieving a User ID

148 IBM

Index

A

ABS function 139

absolute value 139

adding date-time values 69, 70

alphanumeric argument 17

alphanumeric fields 8

alphanumeric formats 109, 116, 133

alphanumeric strings 131

ARGLEN function 19

argument formats 17

argument types 16

ATODBL function 131

AYM function 69

AYMD function 70

B

bar charts 140

BAR function 140

BITSON function 20

BYTVAL function 21

C

calculating remainders 142

centering character strings 24

CHAR_LENGTH function 44

character functions 8, 10, 19

LCWORD2 28

LCWORD3 29

character functions 8, 10, 19

LCWORD2 29, 30

character string bits 20

character string formats 22

character strings 19

CHGDAT function 71

CHKFMT function 22

CHKPCK function 141

comparing character strings 38

converting alphanumeric strings 114, 131

converting case 41

converting character strings 28

converting characters 134

converting date formats 76, 110

converting date-time formats 109

converting date-time value formats 119

converting date-time values 118

converting decimal integers 134

converting double-precision formats 135

converting field formats 132

converting formats 71, 110, 112, 131

converting Gregorian date 119

converting mixed case 28

converting packed decimal 136

converting packed numbers 138

converting text to uppercase 41

converting timestamp 120

converting to lowercase 31

converting zoned format 137

Db2 Web Query Functions 149

CTRAN function 23

CTRFLD function 24

D

DA functions 74

DADMY function 74

DADYM function 74

DAMDY function 74

DAMYD function 74

data source functions 11, 63, 67

data source values 63, 65

data sources 63

Date and date-time functions 14

date and time functions 11, 69

date argument 17

date format 75

date functions, simplified 123

DTPART 127

DTRUNC 129

date string displays 71

date-time precision 89

DATEADD function 75

DATECVT function 76

DATEDIF function 77

DATEFNS parameter 107, 119

DATEMOV function 79

DATETRAN function 82

DAYDM function 74

DAYMD function 74

DB_EXPR function 63

decimal values 21

DECODE function 65, 66

decoding functions 11, 63, 65, 66

decoding values 65, 66

DIGITS function 45

dividing character strings 33

dividing text 33

DMOD function 142

DMY function 98

DOWK function 99

DOWKL function 99

DT functions 100

DTADD function 123

DTDIFF function 126

DTDMY function 100

DTDYM function 100

DTMDY function 100

DTMYD function 100

DTPART function 127

DTRUNC function 129

DTYDM function 100

DTYMD function 100

E

EDIT function 25, 132

elapsed time 122

environment variables 147

EXP function 143

external functions 7

extracting character strings 25

Index

150 IBM

extracting substrings 25, 26, 40

F

FGETENV function 147

finding date difference 77, 98

finding day of week 99

finding difference date-time value 111

finding maximum value 145

finding minimum value 145

finding substrings 34

FIQTR function 103

FIYR function 101

FIYYQ function 105

FMOD function 142

format conversion functions 14

format conversions 131, 133, 134

formats 131

FTOA function 133

function arguments 16

function types 7, 63, 139

functions 7

FIQTR 103

FIYR 101

FIYYQ 105

G

GETTOK function 26

GETUSER function 148

greatest integer 144

GREGDT function 107

H

HADD function 108

HCNVRT function 109

HDATE function 110

HDIFF function 111

HDTTM function 112

HEXBYT function 134

HGETC function 113

HHMMSS function 113

HINPUT function 114

HMIDNT function 115

HNAME function 116

HPART function 117

HSETPT function 117

HTIME function 118

I

IMOD function 142

incrementing date-time values 108

inserting date-time value 117

INT function 144

internal functions 7

international date formats 82

ITONUM function 135

ITOPACK function 136

ITOZ function 137

J

JULDAT function 119

justifying character strings 30, 37

Index

Db2 Web Query Functions 151

L

LAST function 67

LCWORD function 28

LCWORD2 function 28–30

LCWORD3 function 29, 30

LJUST function 30

LOCASE function 31

LOG function 144

logarithms 144

LOWER function 48

LPAD function 49

LTRIM function 51

M

MAX function 145

MDY function 98

measuring length 19

MIN function 145

moving dates 79

N

nanoseconds for date-time values 89

numbers 139

numeric argument 17

numeric format 133

numeric functions 15, 139–145

numeric strings 8

numeric values 139

O

overlaying character strings 32

overlaying character strings with substrings 32

OVRLAY function 32

P

PARAG function 33

PCKOUT function 138

POSIT function 34

POSITION function 52

precision for date-time values 89

PTOA function 35

R

raising numbers to a power 143

retrieving current time 113

retrieving data source values 67

retrieving date-time components 116, 117

retrieving environment variable values 147

retrieving user IDs 148

returning dates 121

REVERSE function 36

reversing character strings 36

right-justifying character strings 37

RJUST function 37

RPAD function 53

RTRIM function 55

Index

152 IBM

S

scales 140

setting date-time value 115

simplified character functions 10, 43

simplified date functions 123

SOUNDEX function 38

spelling out numbers 39

SPELLNUM function 39

SQRT function 145

square root numbers 145

standard date and time functions 11, 69

storing date-time values 113

subroutines 7

SUBSTR function 40

SUBSTRING function 56

substrings 25, 26

subtracting date-time values 69, 70

system functions 16, 147

T

TIMETOTS function 120

TODAY function 121

TOKEN function 57

translating characters 21, 23

TRIM_ function 59

U

UPCASE function 41

UPPER function 61

user IDs 148

V

validating packed fields 141

values 65

Y

YM function 122

YMD function 98

Index

Db2 Web Query Functions 153

Index

154 IBM

	Contents
	1. Using Functions
	Types of Functions
	Character Functions
	Simplified Character Functions
	Data Source and Decoding Functions
	Date and Time Functions
	Standard Date and Time Functions
	Simplified Date and Date-Time Functions

	Format Conversion Functions
	Numeric Functions
	System Functions
	Supplying an Argument in a Function
	Argument Types
	Increased Number of Function Arguments
	Argument Formats

	2. Character Functions
	ARGLEN: Measuring the Length of a String
	Syntax: How to Measure the Length of a Character String
	Example: Measuring the Length of a Character String

	BITSON: Determining If a Bit Is On or Off
	Syntax: How to Determine If a Bit Is On or Off
	Example: Evaluating a Bit in a Field

	BYTVAL: Translating a Character to a Decimal Value
	Syntax: How to Translate a Character
	Example: Translating the First Character of a Field

	CHKFMT: Checking the Format of a String
	Syntax: How to Check the Format of a Character String
	Example: Checking the Format of a Field

	CTRAN: Translating One Character to Another
	Syntax: How to Translate One Character to Another
	Example: Translating Spaces to Underscores on an EBCDIC Platform

	CTRFLD: Centering a Character String
	Syntax: How to Center a Character String
	Example: Centering a Field

	EDIT: Extracting or Adding Characters
	Syntax: How to Extract or Add Characters
	Example: Extracting and Adding a Character to a Field

	GETTOK: Extracting a Substring (Token)
	Syntax: How to Extract a Substring (Token)
	Example: Extracting a Token From a Field

	LCWORD: Converting a Character String to Mixed Case
	Syntax: How to Convert a Character String to Mixed Case
	Example: Converting a Character String to Mixed-Case

	LCWORD2: Converting a Character String to Mixed-Case
	Syntax: How to Convert a Character String to Mixed-Case
	Example: Converting a Character String to Mixed-Case

	LCWORD3: Converting a Character String to Mixed-Case
	Syntax: How to Convert a Character String to Mixed-Case Using LCWORD3
	Example: Converting a Character String to Mixed-Case Using LCWORD3

	LJUST: Left-Justifying a Character String
	Syntax: How to Left-Justify a Character String
	Example: Left-Justifying a Field

	LOCASE: Converting Text to Lowercase
	Syntax: How to Convert Text to Lowercase
	Example: Converting a Field to Lowercase

	OVRLAY: Overlaying a Character String
	Syntax: How to Overlay a Character String
	Example: Replacing Characters in a Character String

	PARAG: Dividing Text Into Smaller Lines
	Syntax: How to Divide Text Into Smaller Lines
	Example: Dividing Text Into Smaller Lines

	POSIT: Finding the Beginning of a Substring
	Syntax: How to Find the Beginning of a Substring
	Example: Finding the Position of a Letter

	PTOA: Packed Decimal to Alphanumeric Conversion
	Reference: Packed Decimal to Alphanumeric Conversion

	REVERSE: Reversing Characters in a Character String
	Syntax: How to Reverse Characters in a Character String
	Example: Reversing the Characters in a String

	RJUST: Right-Justifying a Character String
	Syntax: How to Right-Justify a Character String
	Example: Right-Justifying a Field

	SOUNDEX: Comparing Character Strings Phonetically
	Syntax: How to Compare Character Strings Phonetically
	Example: Comparing Character Strings Phonetically

	SPELLNM: Spelling Out a Dollar Amount
	Syntax: How to Spell Out a Dollar Amount
	Example: Spelling Out a Dollar Amount

	SUBSTR: Extracting a Substring
	Syntax: How to Extract a Substring
	Example: Extracting a String

	UPCASE: Converting Text to Uppercase
	Syntax: How to Convert Text to Uppercase
	Example: Converting a Mixed-Case Field to Uppercase

	3. Simplified Character Functions
	CHAR_LENGTH: Returning the Length in Characters of a String
	Syntax: How to Return the Length of a String in Characters
	Example: Returning the Length of a String

	DIGITS: Converting a Number to a Character String
	Syntax: How to Convert a Number to a Character String
	Example: Converting a Number to a Character String

	Reference: Usage Notes for DIGITS

	LOWER: Returning a String With All Letters Lowercase
	Syntax: How to Return a String With All Letters Lowercase
	Example: Converting a String to Lowercase

	LPAD: Left-Padding a Character String
	Syntax: How to Pad a Character String on the Left
	Example: Left-Padding a String

	Reference: Usage Notes for LPAD

	LTRIM: Removing Blanks From the Left End of a String
	Syntax: How to Remove Blanks From the Left End of a String
	Example: Removing Blanks From the Left End of a String

	POSITION: Returning the First Position of a Substring in a Source String
	Syntax: How to Return the First Position of a Substring in a Source String
	Example: Returning the First Position of a Substring

	RPAD: Right-Padding a Character String
	Syntax: How to Pad a Character String on the Right
	Example: Right-Padding a String

	Reference: Usage Notes for RPAD

	RTRIM: Removing Blanks From the Right End of a String
	Syntax: How to Remove Blanks From the Right End of a String
	Example: Removing Blanks From the Right End of a String

	SUBSTRING: Extracting a Substring From a Source String
	Syntax: How to Extract a Substring From a Source String
	Example: Extracting a Substring From a Source String

	TOKEN: Extracting a Token From a String
	Syntax: How to Extract a Token From a String
	Example: Extracting a Token From a String

	TRIM_: Removing a Leading Character, Trailing Character, or Both From a String
	Syntax: How to Remove a Leading Character, Trailing Character, or Both From a String
	Example: Trimming a Character From a String

	UPPER: Returning a String With All Letters Uppercase
	Syntax: How to Return a String With All Letters Uppercase
	Example: Converting Letters to Uppercase

	4. Data Source and Decoding Functions
	DB_EXPR: Inserting an SQL Expression into a Request
	Syntax: How to Insert an SQL Expression into a Request With DB_EXPR
	Reference: Usage Notes for the DB_EXPR Function
	Example: Multiplying QUANTITY by Two
	Example: Inserting the Db2 BIGINT and CHAR Functions into a Request

	DECODE: Decoding Values
	Syntax: How to Supply Values in the Function
	Example: Supplying Values in the Function

	Syntax: How to Read Values From a File
	Reference: Guidelines for Reading Values From a File
	Example: Reading Values From a File

	LAST: Retrieving the Preceding Value
	Syntax: How to Retrieve the Preceding Value
	Example: Retrieving the Preceding Value

	5. Date and Time Functions
	AYM: Adding or Subtracting Months to or From Dates
	Syntax: How to Add or Subtract Months to or From a Date
	Example: Adding Months to a Date

	AYMD: Adding or Subtracting Days to or From a Date
	Syntax: How to Add or Subtract Days to or From a Date
	Example: Adding Days to a Date

	CHGDAT: Changing How a Date String Displays
	Reference: Short to Long Conversion
	Syntax: How to Change the Date Display String
	Reference: Usage Notes for CHGDAT
	Example: Converting the Date Display From YMD to MDYYX

	DA Functions: Converting a Date to an Integer
	Syntax: How to Convert a Date to an Integer
	Example: Converting Dates and Calculating the Difference Between Them

	DATEADD: Adding or Subtracting a Date Unit to or From a Date
	Syntax: How to Add or Subtract a Date Unit to or From a Date
	Example: Adding Weekdays to a Date

	DATECVT: Converting the Format of a Date
	Syntax: How to Convert a Date Format
	Example: Converting a YYMD Date to DMY
	Example: Converting a Legacy Date to Date Format

	DATEDIF: Finding the Difference Between Two Dates
	Syntax: How to Find the Difference Between Two Dates
	Example: Finding the Number of Weekdays Between Two Dates

	DATEMOV: Moving a Date to a Significant Point
	Syntax: How to Move a Date to a Significant Point
	Example: Determining the End of the Week

	Returning a Date Component as an Integer
	Syntax: How to Extract a Date Component and Return It in Integer Format
	Example: Extracting Date Components in Integer Format

	DATETRAN: Formatting Dates in International Formats
	Syntax: How to Format Dates in International Formats
	Reference: Usage Notes for the DATETRAN Function
	Example: Using the DATETRAN Function

	Precision for Date-Time Values
	Syntax: How to Specify Precision for Date-Time Values
	Example: Specifying Precision for Date-Time Values

	Reference: Usage Notes for Nanosecond Date-Time Format Component

	DATEPATTERN in the Master File
	Specifying Variables in a Date Pattern
	Syntax: How to Specify Years in a Date Pattern
	Syntax: How to Specify Month Numbers in a Date Pattern
	Syntax: How to Specify Month Names in a Date Pattern
	Syntax: How to Specify Days of the Month in a Date Pattern
	Syntax: How to Specify Julian Days in a Date Pattern
	Syntax: How to Specify Day of the Week in a Date Pattern
	Syntax: How to Specify Quarters in a Date Pattern

	Specifying Constants in a Date Pattern
	Example: Sample Date Patterns
	Example: Sorting By an Alphanumeric Date

	DMY, MDY, YMD: Calculating the Difference Between Two Dates
	Syntax: How to Calculate the Difference Between Two Dates
	Example: Calculating the Number of Days Between Two Dates

	DOWK and DOWKL: Finding the Day of the Week
	Syntax: How to Find the Day of the Week
	Example: Finding the Day of the Week

	DT Functions: Converting an Integer to a Date
	Syntax: How to Convert an Integer to a Date
	Example: Converting an Integer to a Date

	FIYR: Obtaining the Financial Year
	Syntax: How to Obtain the Financial Year
	Example: Obtaining the Financial Year

	FIQTR: Obtaining the Financial Quarter
	Syntax: How to Obtain the Financial Quarter
	Example: Obtaining the Financial Quarter

	FIYYQ: Converting a Calendar Date to a Financial Date
	Syntax: How to Convert a Calendar Date to a Financial Date
	Example: Converting a Calendar Date to a Financial Date

	GREGDT: Converting From Julian to Gregorian Format
	Reference: DATEFNS Settings for GREGDT
	Syntax: How to Convert From Julian to Gregorian Format
	Example: Converting From Julian to Gregorian Format

	HADD: Incrementing a Date-Time Value
	Syntax: How to Increment a Date-Time Value
	Example: Incrementing the Month Component of a Date-Time Field

	HCNVRT: Converting a Date-Time Value to Alphanumeric Format
	Syntax: How to Convert a Date-Time Value to Alphanumeric Format
	Example: Converting a Date-Time Field to Alphanumeric Format

	HDATE: Converting the Date Portion of a Date-Time Value to a Date Format
	Syntax: How to Convert the Date Portion of a Date-Time Value to a Date Format
	Example: Converting the Date Portion of a Date-Time Field to a Date Format

	HDIFF: Finding the Number of Units Between Two Date-Time Values
	Syntax: How to Find the Number of Units Between Two Date-Time Values
	Example: Finding the Number of Days Between Two Date-Time Fields

	HDTTM: Converting a Date Value to a Date-Time Value
	Syntax: How to Convert a Date Value to a Date-Time Value
	Example: Converting a Date Field to a Date-Time Field

	HGETC: Storing the Current Date and Time in a Date-Time Field
	Syntax: How to Store the Current Date and Time in a Date-Time Field
	Example: Storing the Current Date and Time in a Date-Time Field

	HHMMSS: Retrieving the Current Time
	Syntax: How to Retrieve the Current Time
	Example: Retrieving the Current Time

	HINPUT: Converting an Alphanumeric String to a Date-Time Value
	Syntax: How to Convert an Alphanumeric String to a Date-Time Value
	Example: Converting an Alphanumeric String to a Date-Time Value

	HMIDNT: Setting the Time Portion of a Date-Time Value to Midnight
	Syntax: How to Set the Time Portion of a Date-Time Value to Midnight
	Example: Setting the Time to Midnight

	HNAME: Retrieving a Date-Time Component in Alphanumeric Format
	Syntax: How to Retrieve a Date-Time Component in Alphanumeric Format
	Example: Retrieving the Week Component in Alphanumeric Format
	Example: Retrieving the Day Component in Alphanumeric Format

	HPART: Retrieving a Date-Time Component in Numeric Format
	Syntax: How to Retrieve a Date-Time Component in Numeric Format
	Example: Retrieving the Day Component in Numeric Format

	HSETPT: Inserting a Component Into a Date-Time Value
	Syntax: How to Insert a Component Into a Date-Time Value
	Example: Inserting the Day Component Into a Date-Time Field

	HTIME: Converting the Time Portion of a Date-Time Value to a Number
	Syntax: How to Convert the Time Portion of a Date-Time Field to a Number
	Example: Converting the Time Portion of a Date-Time Field to a Number

	JULDAT: Converting From Gregorian to Julian Format
	Reference: DATEFNS Settings for JULDAT
	Syntax: How to Convert From Gregorian to Julian Format
	Example: Converting From Gregorian to Julian Format

	TIMETOTS: Converting a Time to a Timestamp
	Syntax: How to Convert a Time to a Timestamp
	Example: Converting a Time to a Timestamp

	TODAY: Returning the Current Date
	Syntax: How to Retrieve the Current Date
	Example: Retrieving the Current Date

	YM: Calculating Elapsed Months
	Syntax: How to Calculate Elapsed Months
	Example: Calculating Elapsed Months

	6. Simplified Date and Date-Time Functions
	DTADD: Incrementing a Date or Date-Time Component
	Syntax: How to Increment a Date or Date-Time Component
	Example: Incrementing the DAY Component of a Date

	Reference: Usage Notes for DTADD

	DTDIFF: Returning the Number of Component Boundaries Between Date or Date-Time Values
	Syntax: How to Return the Number of Component Boundaries
	Example: Returning the Number of Years Between Two Dates

	DTPART: Returning a Date or Date-Time Component in Integer Format
	Syntax: How to Return a Date or Date-Time Component in Integer Format
	Example: Extracting the Quarter Component as an Integer

	DTRUNC: Returning the Start of a Date Period for a Given Date
	Syntax: How to Return the First or Last Date of a Date Period
	Example: Returning the First Date in a Date Period

	7. Format Conversion Functions
	ATODBL: Converting an Alphanumeric String to Double-Precision Format
	Syntax: How to Convert an Alphanumeric String to Double-Precision Format
	Example: Converting an Alphanumeric Field to Double-Precision Format

	EDIT: Converting the Format of a Field
	Syntax: How to Convert the Format of a Field
	Example: Converting From Numeric to Alphanumeric Format

	FTOA: Converting a Number to Alphanumeric Format
	Syntax: How to Convert a Number to Alphanumeric Format
	Example: Converting From Numeric to Alphanumeric Format

	HEXBYT: Converting a Decimal Integer to a Character
	Syntax: How to Convert a Decimal Integer to a Character
	Example: Converting a Decimal Integer to a Character

	ITONUM: Converting a Large Binary Integer to Double-Precision Format
	Syntax: How to Convert a Large Binary Integer to Double-Precision Format
	Example: Converting a Large Binary Integer to Double-Precision Format

	ITOPACK: Converting a Large Binary Integer to Packed-Decimal Format
	Syntax: How to Convert a Large Binary Integer to Packed-Decimal Format
	Example: Converting a Large Binary Integer to Packed-Decimal Format

	ITOZ: Converting a Number to Zoned Format
	Syntax: How to Convert to Zoned Format
	Example: Converting a Number to Zoned Format

	PCKOUT: Writing a Packed Number of Variable Length
	Syntax: How to Write a Packed Number of Variable Length
	Example: Writing a Packed Number of Variable Length

	8. Numeric Functions
	ABS: Calculating Absolute Value
	Syntax: How to Calculate Absolute Value
	Example: Calculating Absolute Value

	BAR: Producing a Bar Chart
	Syntax: How to Produce a Bar Chart
	Example: Producing a Bar Chart

	CHKPCK: Validating a Packed Field
	Syntax: How to Validate a Packed Field
	Example: Validating Packed Data

	DMOD, FMOD, and IMOD: Calculating the Remainder From a Division
	Syntax: How to Calculate the Remainder From a Division
	Example: Calculating the Remainder From a Division

	EXP: Raising e to the Nth Power
	Syntax: How to Raise e to the Nth Power
	Example: Raising e to the Nth Power

	INT: Finding the Greatest Integer
	Syntax: How to Find the Greatest Integer
	Example: Finding the Greatest Integer

	LOG: Calculating the Natural Logarithm
	Syntax: How to Calculate the Natural Logarithm
	Example: Calculating the Natural Logarithm

	MAX and MIN: Finding the Maximum or Minimum Value
	Syntax: How to Find the Maximum or Minimum Value
	Example: Determining the Minimum Value

	SQRT: Calculating the Square Root
	Syntax: How to Calculate the Square Root
	Example: Calculating the Square Root

	9. System Functions
	FGETENV: Retrieving the Value of an Environment Variable
	Syntax: How to Retrieve the Value of an Environment Variable
	Example: Retrieving the Language Locale

	GETUSER: Retrieving a User ID
	Syntax: How to Retrieve a User ID
	Example: Retrieving a User ID

	Index

